Safety Signs

You have a legal responsibility to carry out a risk assessment of

your premises, any hazards that cannot be eliminated, must be

marked with a sign. Consider all potential hazards to both

employees and visitors to your site.

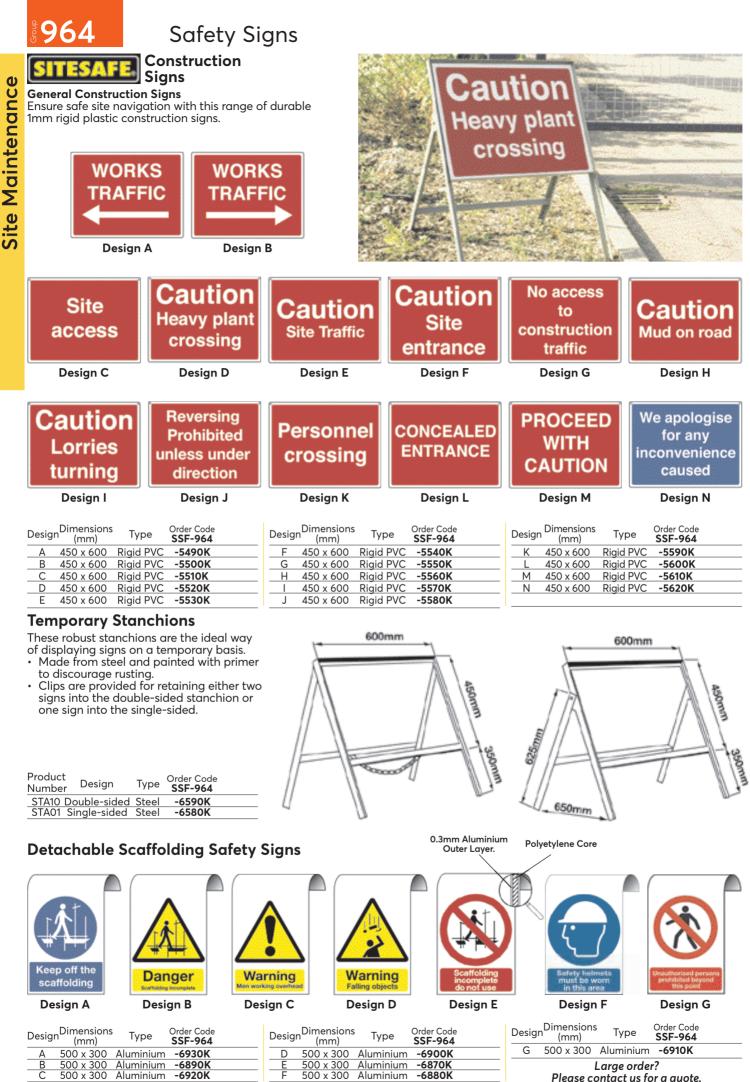
Site Maintenance

964

Legislation

D

Design	Dimensions (mm)	Туре	Order Code SSF-964	Desigr	Dimensions n (mm)	Туре	Order Code SSF-964	Desigr	Dimensions (mm)	Туре	Order Code SSF-964
Α	400 x 300	Rigid PVC	-7797K	H	400 x 300	Rigid PVC	-7250K	Р	297 x 210	Rigid PVC	-7978K
	70 x 50	Rigid PVC	-7340K		297 x 210	Rigid PVC	-7800K		420 x 297	Rigid PVC	-7350K
В	210 x 148	Rigid PVC	-6980K	1		Self-Adhesive		0	297 x 210	Rigid PVC	-7984K
		elf-Adhesive Rigid PVC	<u>-6990K</u> -7230K		594 x 420 420 x 297	Rigid PVC Rigid PVC	<u>-7802K</u> -3070K	Q	297 x 210 420 x 297	Self-Adhesive Rigid PVC	-7985K -3090K
С		elf-Adhesive		J	594 x 420	Rigid PVC	-7100K		210 x 148	Rigid PVC Rigid PVC	-6940K
	210 x 148	Rigid PVC	-2380K		210 x 148	Rigid PVC	-3610K	R		Self-Adhesive	
D		elf-Adhesive		К		Self-Adhesive		, it	420 x 297	Rigid PVC	-6960K
	420 x 297	Rigid PVC	-6490K		420 x 297	Rigid PVC	-4990K		210 x 148	Rigid PVC	-7110K
	210 x 148	Rigid PVC	-2420K	L	420 x 297	Rigid PVC	-3300K	S	210 x 148	Self-Adhesive	-7120K
E	210 x 148 S	elf-Adhesive	-2430K		210 x 148	Rigid PVC	-3170K		420 x 297	Rigid PVC	-7130K
	420 x 297	Rigid PVC	-2440K	M		Self-Adhesive		T	420 x 297	Rigid PVC	-6750K
		Rigid PVC	-7150K		420 x 297	Rigid PVC	<u>-3190K</u>	U	210 x 148	Rigid PVC	-7986K
F	210 x 148 Se		-7160K	Ν	210 x 148	Rigid PVC	-7792K		420 x 297	Rigid PVC	-2360K
•	420 x 297	Rigid PVC	-7170K		400 x 300 s				210 x 148	Rigid PVC	-3340K
	420 x 297 210 x 148	Rigid PVC	<u>-7180K</u> -3550K	0	210 x 148 210 x 148 s	Rigid PVC	-2460K -2470K	V	210 x 148 420 x 297	Self-Adhesive	-3350K -3360K
G	210 x 148 210 x 148 S	Rigid PVC		0	420 x 297	Self-Adhesive Rigid PVC	-2500K		297 x 210	Rigid PVC Rigid PVC	-7973K
	210 x 140 3	en-Adhesive	-3300K		420 x 297	Rigid PVC	-2500K		210 x 148	Rigid PVC	-7973K
								Х		Self-Adhesive	
									=		


50 Years of Keeping Industry Working © 2020

785

SITESAFE

Hazard Warning Signs

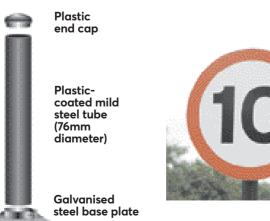
Rigid PVC and Self-Adhesive.

Please contact us for a quote.

786

Order before **5PM** for **Next Day Delivery** on stocked items All prices exclude VAT© 2020

Posts and Fixings

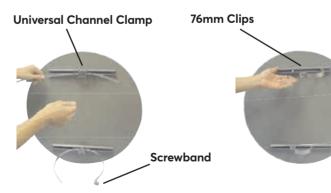

600 x 600

D

- We recommend the use of a baseplate to allow approximately 600mm sink below the ground.
- The screwband fixing and universal channel clamp will allow fixing to existing posts up to 160mm in diameter.

-7762K

- Each sign requires 2 x 76mm clips, or two each of the
- screwband and universal fixing clamp for post fixing.


50 Years of Keeping Industry Working © 2020

Н

450 x 600

Wall Fix

-7768K

L

600 x 680

Description	Order Code SSF-964
2.5m Grey Post	-7877K
Grey Plastic End Cap	-7876K
Galvanised Steel Baseplate	-7875K
76mm Clips (Pk-2)	-7795K
Screwband Fixing	-7956K
Universal Channel Clamp	-7974K

Wall Fix

-7764K

964

SITESAF

Safety Signs **Scafftag** Laddertag®

A must for all ladders, kick stools and podiums.

- Regular and detailed inspections of ladders, both temporary and fixed, must be carried out.
 Laddertag[®] is robust and highly visible, displaying information on the ladder class and inspection period.

- The reverse of the insert displays a quick reference inspection checklist.
 Laddertag[®] Kit contains 10 holders, 10 inserts and one pen.
 We recommend that the Wallchart should be used to highlight safety awareness.

Description	Order Code SSF-964	
Laddertag Kit	-9009A	
Laddertag Inserts (Pk 10)	-9009N	
Laddertag Inserts (Pk 50)	-7894K	
Ladder Inspection Pocket Guide (Pk 5)	-9010B	
Laddertag Holders (Pk 10)	-9011B	
600 x 420 Ladder Inspection Guide	-9012M	
Ladder Yellow Book	-7893K	

Towertag®

- Ideal for all types of mobile towers.
 Working in the same fashion as Scafftag[®] (opposite) the up-to-date status of the tower is instantly visible.
 The insert allows specific information on the movement of each tower scaffold and maximum safe working loads to be clearly displayed at the point of use.
- Simply slide the insert into the 'DO NOT USE SCAFFOLD' all weatherproof, UV resistant holder.
 The Towertag[®] Kit (SCF06) includes 10 holders, 20 standard inserts and 2 pens.
 A wallchart is also available to train employees and create awareness of this unique product.

	<u>.</u>
TRANSFER	
Section of	

Insert

Order Code SSF-964

-7899K

-7928G

-7928R

Wallchart

-7928R

Plant & Machinery Microtag®

- The most popular status management system for electrical testing.
 Enables maximum visibility with minimal attachment space, the tags are a heavy-duty alternative to labels which are prone to damage in industrial environment.
 The holder displays 'DO NOT USE EQUIPMENT' prior to inspection when a choice of three colour inserts are available to use.
- The holder can be attached to the equipment with adhesive
- The holder can be attached to the equipment with dahesive or to the power lead with cable ties.
 Plant & Machinery Microtag[®] Kit contains 20 holders, 40 cable ties (150mm long) and 1 pen. Inserts are available separately.

Description Towertag Kit Towertag Inserts (Pk 10)

Towertag Inserts (Pk 50)

Tower Inspection Pocket Guide (Pk 5) 600 x 420 Alum & Fibreglass Tower

Inserts

-7928G

REF. No

NEXT TEST DATE

MTI GPI

-7928Y

Order Code SSF-964

-9007M

-9008B

-7972K

-9008N

-9011M

Holder

Microtag Insert Green (Pk 20) Microtag Insert Red (Pk 20) Microtag Insert Yellow (Pk 20) -7928Y Microtag Holders (Pk 20) -7898K 50 Years of Keeping Industry Working © 2020

Description

Microtag Kit

Safety Signs

964

SITESAFE Scafftag An Introduction . . .

Status Management Systems Scafftag® is the innovative tagging system which creates a complete safety management system for your workplace.

The tagging system comprises of two components, a permanent holder which is attached to the equipment and a replaceable status insert.

Key benefits:

- Empowers employees to make informed and accurate decisions by making information instantly visible.
- · Allows the tracking, usage, maintenance and inspection status of equipment helping safeguard employees and others.
- Ensures your company complies with key working legislation:
- Health and Safety at Work Act 1974
- Management of Health and Safety at Work Regulations 1999.
- Construction (Health, Safety and Welfare) Regulations 2007.
- · Fitted to all legal access points the unique holder and insert ensure that the latest scaffold status is instantly visible from the scaffold buildstage to dismantle.
- The Scafftag® Kit (SCF01) includes 10 holders, two standard inserts and two pens. Replacement inserts are available in packs of 10 and 50.
- We recommend that you accompany your Scafftag® equipment with the Wallchart and Pocket Guide (semi-rigid PVC). These will increase employee knowledge and encourage the use of Scafftag® into their routine.

Prohibition Insert

Standard Inspection Insert

Product Number	Description	Pack Quantity	Order Code SSF-964			THE POLICIAN ACCORD		The CALIFICH ALBROD
SCF01	Scafftag® Kit	1	-9005A					SHOAD SENDED
SCF02A	Prohibition Inserts	10	-9005N				10000	
SCF02B	Prohibition Inserts	50	-7930K	Load Class	sification Table			
SCF03A	Standard Inspection Inserts	10	-9006B		Load	Pack	Order Code	
SCF03B	Standard Scafftag® Mk1 Inserts	10	-7967K	Colour	Classification	Quantity	SSF-964	
SCF04B	Scaftag [®] Load Classification Inserts	50	-7955K			1		
SCF28	Scaftag [®] Holders	10	-9010N	Grey	Very Light-Duty	10	-9006L	
SCF05	Scaffold Inspection Pocket Guide	5	-7950K	Pink	Light-Duty	10	-9006S	
WC209	600 x 420mm Wall Chart	1	-7949K	Orange		10	-9006T	
SCF33	Scaffold Inspection Report - Blue Boo	ok 1	-7951K	Blue	Heavy-Duty	10	-9006V	
	caffold Inspection Report - Green Bo		-7948K	Maroon	Special-Purpose	10	-9006W	

18.00

ISOLATION TAG

ISOLATION TAG

out attains remaining an danks.

Street and

Isotag[®]

Holder

Isotag[®] is a complete tagging system to help control mechanical and electrical isolation procedures.

- · Current operational status is instantly visible to all individuals.
- Prevents the inadvertent energising of a
- system, reducing the potential for accident. Two-part perforation allows tag to remain on asset with permitting authority holding detached section.
- · Both parts can be consolidated when task has been completed.

Description	Pk Qty	Order Code SSF-964
lsotag®	10	-7886K
lsotag®	50	-7887K
	EO V	laara of Kaapi

50 Years of Keeping Industry Working © 2020

Site Maintenance

978

and holdalls.

Ð DC

Site Maintena

MATLOCK

ideal for keys, leashes

A general-purpose hook

Snap Hook

Order Code

MTL-978

MTI -978

-4510K

Finish

Finish

Nickel-Plated

Rope & Chain Fittings

Swivel Harness Wire Rope Grips

To grip the return ends of wire rope when in a loop. For rope grips shackles supplied with certificates of conformity please.

		1000	1000
Wire Rope Dia. (mm) Finish	Pack Qty	Order Code MTL-978	
3 (^{1/} 8") Galvanise	ed 4	-5010K	
5 (^{3/} 16") Galvanise		-5020K	
6 (¼″) Galvanise	ed 4	-5030K	
8 (^{5/} 16") Galvanise		-5040K	
10 (^{3/} 8") Galvanise		-5060K	
13 (1/2") Galvanise	ed 2	-5070K	

Dee Shackles

A coupling link for chain and rope with a 'D' shape to prevent excess movement. Material and pin

diameters are equal except where stated. Rated loads are for guidance only - 'tested' dee shackles are available to order

Material x P Dia. (mm)	ⁱⁿ Finish	Pack Qty	Order Code MTL-978	
5 (^{3/} 16")	Galvanised	4	-4320K	
6 (1/4")	Galvanised	4	-4330K	
8 (^{5/} 16")	Galvanised	2	-4340K	
10 (7/16")	Galvanised	2	-4350K	
12 (1/2")	Galvanised	2	-4360K	
16 (^{5/} 8″)	Galvanised	2	-4370K	
4 (5/32")	St. Steel	2	-4380K	
5 (^{3/} 16")	St. Steel	2	-4390K	
6 (¹ ⁄ ₄ ")	St. Steel	2	-4400K	
8 (5/16")	St. Steel	2	-4410K	

Carbine Hooks

Quick release hook for connecting to chain or rope.

Dia. x Length (mm)			Order Code MTL-978
5 x 50 (2")	Galvanised	2	-4120K
6 x 60 (2 ^{3/} 8")	Galvanised	2	-4130K
7 x 70 (2 ^{3/} 4")	Galvanised	2	-4140K
8 x 80 (3 ^{5/} 32")	Galvanised	2	-4150K
10 x 100 (4")	Galvanised	2	-4160K
4 x 40 (1 ^{19/} 32")	St. Steel	2	-4180K
5 x 50 (2")	St. Steel	2	-4181K
6 x 60 (2 ^{3/} 8")	St. Steel	2	-4182K
8 x 80 (3 ^{5/} ₃₂ ")	St. Steel	2	-4183K

Bow Shackles

A coupling link with a bow shape to allow extra clearance for more than one

Finish

Galvanised

Galvanised

Galvanised

length of chain or rope. Material and pin diameters are equal except where stated. Rated loads are for guidance only. 'Tested' bow shackles are available to order.

Material x Pin

Dia. (mm)

6 (1/4") 10 (3/8")

13 (1/2")

Order Code

MTL-978

-4420K

-4440K

-4450K

Elastic Shock Cord

Manufactured from hard-wearing and rot-proof elastic shock cord with a multistranded elastic core, the outer polythene cover is UV- resistant, weatherproof and heat cut and sealed to prevent fraying. Ideal for securing awkward items etc.

Size	Order Code MTL-978	
6mm x 8m 8mm x 8m	-6560K -6580K	

Tarpaulin Cord Ball Ties

Manufactured from hard-wearing and rot-proof 5mm elastic shock cord with a multi-stranded elastic core, the outer polythene cover is UV-resistant and weatherproof.

Size	Order Code MTL-978
150mm (6")	-9160K
250mm (10")	-9200K

Polyester White Sash Cord

100% polyester with low stretch and high abrasion resistance. Suitable for use on sash windows and

for all year outdoor use. UV and weather resistant and easy to handle, knot and splice. 8 plait construction.

Size	Weight	Order Code	
Dia x Length	each	MTL-978	
6mm x 10.m	225g	-5610K	
6mm x 100m	3.02kg	-5920K	

Polyester Rope

6mm x 100m reel. No.4 type. 8 plait construction. Centre core. 100% polyester. Multi-filament. High tenacity. Round section. Easy to handle,

knot and splice. High abrasion-resistance. Resistant to organic and mineral acids, oxidising agents and diluted alkalis. UV-resistant. Weather-resistant.

Low stretch. Smooth running. A general-purpose high strength rope, suitable for repairing sash windows.

Size	Weight	Order Code
Dia x Length	each	MTL-978
6mm x 100m	2.3kg	-5620K

Length x Eye (mm) 76 x 20 (3" x ³/₄") Nickel-Plated **-4540K Swivel Spring Billet Hook** Animal leash clips for chains, with swivel to prevent knotting and twisting. Length (mm) 57 (21/4")

Ring On Plate

For tethering animals, mooring small boats, and securing equipment.

Ring x Plate Order Code Finish MTL-978 (mm) 50 x 50 (2" x 2") Galvanised -4740K

Staple On Plate

A comprehensive range of accessories to suit flexible connectors, ropes and chains. For permanently fixing chain or rope to a wall, fence or post.

Staple x Plate (mm)	Finish	Order Code MTL-978
50 x 50 (2" x 2")	Galvanised	d -4720K

Hook On Plate

End fitment for mounting on to fence posts or walls.

Cleat Hooks

(mm)

BZP

-4640K

50 Years of Keeping Industry Working © 2020

790

150 (6"

6mm x 10m hank and 00m reel. No.4 type. Eight plait construction with core. 100% natural jute fibre. Rustic feel. Knots well. Hard-wearing and tactile. Resistant to heat and fire. Low stretch. Fully biodegradable. Store in a dry place. A gene

Fully biodegradable. Store in a dry place. A general-purpose rope used by builders, DIY and gardeners.

Size	Weight	Order Code	
Dia x Length	each	MTL-978	
6mm x 10m	185g	-5510K	
6mm x 100m	1850g	-5520K	

Waxed Cotton Rope

6mm x 10m hank and 100m reel. No.4 type. 16 plait construction. Waxed for longer life. Polypropylene core for added strength. Hard-

wearing and tactile. Weather-resistant. Low

stretch. Smooth running. Used in the building trade and DIY for sash window repair, household refurbishment and outdoor use.

Size Dia x Length	Weight each	Order Code MTL-978	
6mm x 10m 6mm x 100m	240g 2.4kg	-5710K -5720K	

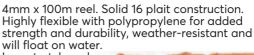
Cargo Strap

Moulded out of custom compounded rubber (50%) with reinforced ends. Strong end hooks, zinc-plated for added rust protection.

Industrial Load Straps

Load Strap Plain End

Supplied as a single strap with ratchet unit attached to one end. Tension is applied by looping the strap around the cargo and threading back through the ratchet. Designed to safely secure cargo for transport. **EN12195-2**.



Size (Width x Length)	Min. Breaking load	Order Code MTL-978	
25mm x 2.5m	300kg	-8020K	
25mm x 4.5m	800kg	-8040K	
25mm x 4.5m	1,000kg	-8060K	
25mm x 4.5m	5,000kg	-8070K	
25mm x 6.0m	800kg	-8080K	
25mm x 6.0m	1,000kg	-8100K	
25mm x 6.0m	5,000kg	-8110K	
25mm x 7.5m	2,000kg	-8120K	
25mm x 7.5m	2,500kg	-8140K	
50mm x 8.0m	5,000kg	-8180K	I
		• • • •	14/ 1.

50 Years of Keeping Industry Working

Rope & Cargo Straps

Hi Vis Braided Cord

will float on water. Low stretch and smooth running.

mooth running.		FLOCK Braided Corti	
Size Dia x Length	Weight each	Order Code MTL-978	
4mm x 100m	600g	-6840K	

Polished Cotton Rope

6mm x 10m hank. No.8 type. Solid 12 braid construction. Centre core. 100% pure cotton. Traditional red spot design. Polished finish for longer life. Round section. High abrasion

resistance. Moisture-resistant. Low stretch. Smooth running. For sash window repair and industrial and domestic pulley systems.

Size	Weight	Order Code	
Dia x Length	each	MTL-978	
6mm x 10m	285g	-5910K	

Complete Vehicle Recovery Strap

Designed to safely secure vehicle for transport.

Hook-Ended Two-Part Load Strap

Supplied as two pieces. Designed to safely secure cargo for transport.

Size (Width x Length)	Min. Breaking load	Order Code MTL-978	
25mm x 4.0m	1,500kg	-8300K	
50mm x 4.0m	4,000kg	-8320K	
25mm x 4.5m	800kg	-8340K	
25mm x 4.5m	1,000kg	-8360K	
50mm x 5.0m	2,000kg	-8370K	
25mm x 6.0m	1,000kg	-8380K	
25mm x 6.0m	1,500kg	-8400K	
50mm x 8.0m	1,500kg	-8470K	
35mm x 6.0m	3,000kg	-8420K	
35mm x 7.5m	2,000kg	-8440K	
35mm x 7.5m	2,500kg	-8460K	
50mm x 6.0m	4,000kg	-8430K	
50mm x 8.0m	4,000kg	-8480K	
50mm x 8.0m	5,000kg	-8500K	
50mm x 9.0m	4,000kg	-8540K	
50mm x 9.0m	5,000kg	-8560K	
50mm x 10.0m	4,000kg	-8600K	
50mm x 10.0m	5,000kg	-8620K	
75mm x 10.0m	10,000kg	-8640K	
75mm x 15.0m	10,000kg	-8680K	
75mm x 20.0m	10,000kg	-8710K	

992

Traffic Management

Effective solution that guarantees satisfactory **BARRIER CONTROL in any environment**

Traditional systems for controlling people traffic using standard barriers connected via a chain or belt going pole to pole are associated with the continuous problems of maintaining a safe place to work. Even expanding barriers or self-retractable barriers could break, fall down or blow away exposing people to unnecessary and unacceptable risk. The cumbersome nature of the sturdier systems also limits their usability, making them less flexible and impairs their portability. These problems are magnified in areas that have to cope with work space restrictions and hazardous working conditions such as those found in the offshore gas and oil industry. Barriers are a key requirement of the Health and Safety (Safety Signs and Signals) Regulations.

The 'Z-Barrier' system is the most innovative improvement in temporary safety barriers and provides an effective solution that guarantees satisfactory barrier control in any work environment.

'Z-Barriers' are patient pending for the unique design that ensures barriers are prominent and remain in position, for all physical and environmental conditions. Manufactured from a unique, reinforced PVC-based double-sided warning tape, with a high visibility day glow pattern on one face and a night reflective pattern on the other face. These are the most visible barriers available on the market today. Quick and easy to put

These are the most visible barriers available on the market today. Quick and easy to put up, they are easily fastened to any anchor point or each other, providing a flexible barrier across any opening, around objects or in multiple directions. Elastic properties allow 'Z- Barriers' to expand and fit between points instead of being cut to length. They are inherently shock absorbing and resist any degree of wind load to prevent damage.

Other signs available on request, specials can be made to order.

A4 Sign Pockets (shown above)

The flexible and robust sign pockets were designed to allow users to quickly and effectively create their own signage. All you need is a pen and paper. However we do supply a range of standard signs that will fit the pockets. The most popular designs are shown here.

Order Code MTL-992

-7010K

Safety Signs to suit Z-Barrier Sign Pockets (shown above)

Rigid PVC signs which can also be used independently on flat surfaces to further highlight restrictions. **Size:** 200 x 300mm.

Other signs available - see Group 964

Text	Order Code SSF-964	
Danger Men Working Overh Slippery Floor Strictly No Admittance	ead-7400K -7410K -7420K	
No Admittance Symbol No Entry	-7430K -7440K	

Individual Z-Barriers

	Size	Expansion Range Wh	Order Code MTL-992 nite/Red	
_	1	1 - 2m	-5010K	
	2 3	2 - 4m 3 - 6m	-5020K -5030K	
		Yell	ow/Black	
	1	1 - 2m	-9301K	
	2	2 - 4m	-9302K	
	3	3 - 6m	-9303K	
1	, 2, 3	1 - 6m	-9322K	
7	'92		0 Years of	Keeping

Z-Barrier Starter Pack Contents: 10x size 1, 5x size 2 and size 3 and 2x sign pockets.

-9010K

-3500K

) Years of Keeping Industry Working

White/Red

Insulation Tape/Traffic Management

986|992

Site Maintenance

Chain Support Post with Cap Height: 910mm. Diameter: 50mm.

Colour	Order Code MTL-992
White/Red	-2840D
Yellow/Black	-2860F

Chain Support Post Bases

Colour	Weight (kg)	Order Code MTL-992	
Standard	1.9	-2720B	
Heavy-Duty	3.3	-2740D	

25m Chains

Colour	Chain Diameter	Order Code MTL-992	
Red/White Black/Yellow	6mm 6mm	-2500K -2510K	
Red/White	8mm	-2520K	
<u>Black/Yellow</u> Red/White	<u>8mm</u> 10mm	<u>-2530K</u> -2540K	
Black/Yellow	10mm	-2550K	

AVON PVC Insulation Tapes

Extremely flexible with a good adhesion. For wire and cable insulation, bundling and reinforcing. Assorted colours for colour-coding cables. Flame retardant.

Manufactured to **BS 4J10** (Aero) and **BS 3924.**

Roll length: 33m.

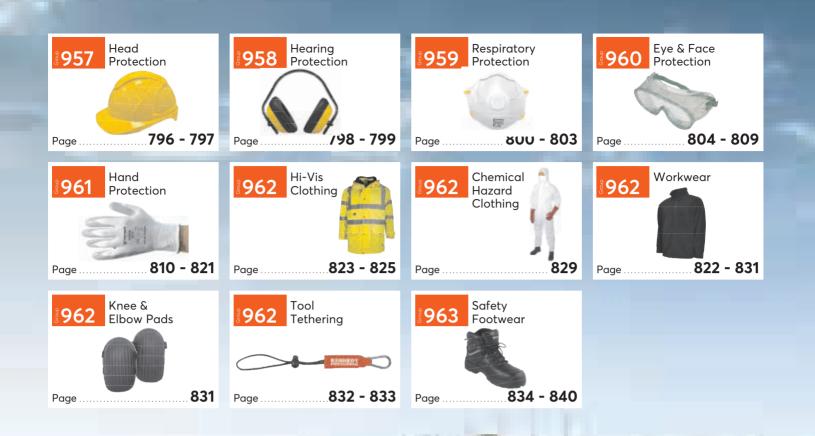
Box quantities: 19mm = 40, 25mm = 30. Thickness: 0.13mm (5mil). Adhesion: 0.47kg/25mm. (16.5oz/1"). Tensile strength: 5.2kg/25mm (11.5lb/1"). Elongation: 150%. Breakdown voltage: 5.5kV. Insulation class: 80°C. *Assorted Colours: Black whith yellow area (

n (11.5lb/1"). Group 558

Roll Size (W x L)	Colour	Box Qty	Order Code AVN-986
	Grey	40	-7400K
	Purple	40	-7450K
	Orange	40	-7500K
	Brown	40	-7550K
	Black	40	-7600K
19mm	Blue	40	-7650K
x 33m	Green	40	-7700K
	Red	40	-7750K
	White	40	-7800K
	Yellow	40	-7850K
	Green/Yellow	40	-7950K
	Assorted* (8	Rolls)	-8920K
	Black	30	-8100K
	Blue	30	-8150K
25mm x 33m	Green	30	-8200K
	Red	30	-8250K
	White	30	-8300K
	Yellow	30	-8350K

50 Years of Keeping Industry Working

Pipe Repair Tape Completely water and UV-resistant. Used to joint and repair a wide range of power and distribution cables up to 46kV. For above and below ground.


Roll Size (W x L)	Colour	Order Code AVN-981	
25mm x 10m	Black	-0940K	

Extra Wide PVC Insulation Tape

Extremely flexible with a good adhesion. For wire and cable insulation, bundling and reinforcing. Flame retardant. Manufactured to **BS 4J10** (Aero) and **BS 3924**.

Roll Size (W x L)	Colour	Order Code AVN-986	
50mm x 33m	Black	-8500K	
100mm x 33m	Black	-8700K	

Personal Protection

Product Groups **957 - 963**

Contents

Description		Group	Page	
Arm Protection		961	812	
Eye & Face Pi	rotection	960	804 - 809	
	- Goggles	960	808	
	- Safety Glasses	960	806 - 807	
	- Welding	960	809	
Footwear - So	afety	963	834 - 840	
	- Insoles & Laces	963	840	
	- S1P	963	839	
	- S3	963	836 - 838	
	- S5	963	840	
	- SB	963	840	
	- Wellingtons	963	840	
Hand Protection		961	810 - 821	
	- Cut Level B	961	813	
	- Cut Level C	961	813	
	- Cut Level D	961	812	
	- Cut Level E	961	812	
	- Disposable	961	819	
	- General Handling	961	816 - 818	
	- Latex Coated	961	815	
	- Nitrile Coated	961	814	
	- PU Coated	961	814 - 815	
	- Thermal Protection	961	820	
	- Welding	961	821	

Description	G	Group	Page
Head Protection		957	796 - 797
	- Bump Caps	957	797
	- Safety Helmets - ABS	957	797
	- Safety Helmets - HDPE	957	797
Hearing Protect	ion	958	798 - 799
	- Detectable Ear Plugs	958	799
	- Ear Defenders	958	799
	- Ear Plug Dispensers	958	799
	- Reusable Ear Plugs	958	799
	- Single Use Ear Plugs	958	799
Respiratory Pro	tection	959	800 - 803
	- Disposable Respirators - FFP1	959	802
	- Disposable Respirators - FFP2	959	803
	- Disposable Respirators - FFP3	959	803
Tool Tethering		596	832 - 833
Workwear		962	822 - 831
- Ba	ck Supports	962	831
- Ch	emical Protection	962	829
- Dis	posable	962	829
- Elk	oow Pads	962	831
- Fle	eces	962	827
- Fo	od Industry	962	830
- Hi-	Vis	962	823 - 825
- Ja	ckets	962	826
- Kn	ee Pads	962	831
- Wo	aterproofs	962	826
- We	elder's Clothing	885	828

Head Protection

Hazards

EN317, EN812 Impact from falling or flying objects, Risk of head bumping.

Options

A range of helmets and bump caps.

Intended to protect against minor bumps to the head, typically

offer adequate protection against falling objects and heavier

ABS safety helmets are made of quality acrylonitrile butadiene

HDPE is a much more cost effective material but does require

thicker wall thickness to ensure that a safe helmet can be

flexibility allowing for excellent shock absorption properties.

styrene, a common thermoplastic material with excellent impact

produced. The material is very durable and has a good degree of

Safety Helmet & Bump Cap materials

from low ceilings or hanging items in the workplace. They should

never be used as a substitute for safety helmets since they do not

Visit any construction site almost anywhere in the world and safety helmets will be everywhere, providing workers with essential protection from falling objects such as bricks and tools and/or possible structural or equipment head hazards. Safety helmets are also widely used across most industries.

Bump caps

resistance and toughness.

impacts

What the law requires

The **Personal Protective Equipment at Work Regulations 1992** require employers to provide head protection for workers and visitors wherever it is needed – free of charge and with appropriate training.

Safety Helmets

Available in a variety of styles for individual comfort, including lightweight and vented helmets for additional comfort. Many helmets can now be fitted with accessories such as face shields and ear muffs for added protection.

- Check your safety helmet regularly for signs of damage.
- Don't fix stickers or write on your safety helmet it could compromise its performance.
- Keep stored away from direct sunlight. Excessive UV can damage helmets (rear parcel shelves in cars are not a good place).
- As a general guide, industrial safety helmets should be replaced after three years but always check the date stamp (this is usually on the peak) and the manufacturer's instruction as some have longer periods.

EN Standards

There are different safety standards dependant on the use of the Helmets and Bump Caps.

EN 97 2012 EN 12492	Hard hats are manufactured and tested in the UK to BS EN 397. This European standard code of practice provides guidance for manufactures of hard hats, to ensure minimum materials grades are used in the production of the hard hat, and the requrements of the testing to be undertake to keep users safe in accordance with the minimum requirements specified in BS EN 397. Helmets for Mountineering. Mountaineering helmets are intended to provide protection against sharp / pointed objects, and so are tested for penetration by sharp objects. The test in EN 12492 is essentially the same as that specified in EN 397, where a 3kg conical striker is dropped onto the helmet from a height of 1 meter,	EN 352-3 EN 812 EN 1731	EN 352-1, -2 and -3 are the basic parts of EN 352 standard of the hearing protectors. Testing and safety requirements for ear-muffs are in EN 352-1 and those for earplugs are described in EN 352-2. Testing methods for ear-muffs attached to industrial safety helmets are covered in EN 352-3. EN 812:A1, relates to bump cap of current use. They are used in the industry to protect the head when it hits hard and static objects that can stun or cause lacerations and superficial injury to the wearer. They are primarilly intended for indoor use but can also be used outside for some businesses. This standard relates to the mesh protector that
	and any contact between the helmet and headform.	211 1/01	attaches to helmets
EN 166	This is an safety standard for eyewear and some safety helmets have integrated eyewear Anti Scratch / Anti Mist	EN 50365	Insulating helmets for use on low voltage installations, Protection against electric shocks and prevention of dangerous electric current passing through the head - requirements. Protection against alternating voltage of up to 1000 V (AC) or direct voltage up to 1500 V (DC).
796	50 Years of Keeping Industry Workir	ig	

© 2020

Safety Helmets & Bump Caps

Standard

Made of high-density injected polyethylene, the Sitesafe Standard Safety Helmet is designed to provide optimal impact protection from falling objects such as bricks and roofing tiles, as well as from electrical discharges up to 440V ac. It comes with a fully adjustable six point harness to fit a wide range of head sizes. Conform to: EN 397: 2012 & EN 50365: 2002.

Baseball 🗊 TUFFSAFE **Bump Caps**

Energy from an impact is absorbed and dissipated by partial destruction or damage to the under shell of the cap. It is fashionable. Side and top vents for increased comfort. Washable. Adjustable strap to fit head size 54 to 59cm. Conforms to: **EN 812: 2012**.

Standard Helmet - ABS Vented safety helmets that have been designed with comfort, performance and style in mind. 6-point adjustable harness ensures a safe comfortable fit. Conform to: EN397: 2012.

Vented Safety Helmets

Harness

Full Peak Design

			3
	Colour	Order Code TFF-957	
	White	-1210K	
	Yellow	-1220K	
	Blue	-1230K	
	Red	-1240K	
	Orange	-1250K	
1	djustable Chinstrap	-1940K	

Helmet Accessories Ear Defenders

For use with Tuffsafe Vented Safety Helmets. Conform to: EN 352-3: 2002.

> SNR = 27dB

Order Code TFF-958 -1250K

Helmet F 5. 114 Accessories

For use with Sitesafe Safety Helmets. 225mm clear polycarbonate visor provides all round visibility whilst protecting against flying particles and liquid splash. Visor carrier supplied separately.

957

© 2020

Hearing Protection

Wear ear protectors

Hazards

Noise – a combination of sound level and duration of exposure. Very high-level sounds are a hazard even with short duration.

Options

A range of earplugs and earmuffs.

Noise

Activity

Riveter

Rocket launching

Jet engine, gunshot

Thunder, impact drill

Chainsaw, car horn

Impact wrench

Rotary Drill

Jet takeoff (threshold of pain)

Fireworks, underground train

HGV, lawnmower, arc welder

Light traffic, average home

Living room, quiet office

Noisy restaurant, business office

Alarm clock, hair dryer

Normal conversation

Library, soft whisper

Threshold of hearing

Rustling leaves

Many employees are exposed to noise levels at work that may be harmful. According to the Health & Safety Executive, some 17,000 people in the UK suffer deafness, ringing in the ears or other ear conditions caused by excessive noise at work - and the worst thing about hearing damage is that it cannot be reversed.

Noise is not a linear scale, an increase of 3dB doubles the noise level. It is not only how loud the noise is, but how long workers are exposed to it that needs to be taken into consideration.

What PPE products are available?

There is a wide range of **earplugs** and **earmuffs** available to suit all requirements and ensure protection, comfort and good practice.

Understanding Noise Levels

Exposing your employees to high noise levels without providing them with adequate protection will cause damage to their hearing. Hearing damage is permanent. Noise is not a linear scale - an increase of 3dB doubles the noise level:- 83dB(A) is twice as loud as 80dB(A)

Applicable Standards

EN352-1 Ear Muffs EN352-2 Ear Plugs EN352-3 Helmet Mounted Ear Muffs EN352-4 Level Dependant Ear Muffs EN352-5 Active Noise Reduction Ear Muffs EN352-6 Ear Muffs with Electrical Audio Input EN352-7 Level Dependant Ear Plugs

Lower Exposure Level

Action to take:

- 1. A range of hearing protectors must be made available to workers exposed to noise. Usage is voluntary.
- 2. Training provided on safe working, detecting hearing damage, risks of noise exposure and the correct use and fitting of hearing protectors.
- 3. Audiometric screening should be made available to those at risk of NIHL.

Upper Exposure Level

Action to take:

- 1. A range of hearing protectors must be made available to workers exposed to noise. Usage must be enforced.
- 2. Noisy areas must be clearly identified with warning signs.
- 3. Exposed workers should have audiometric evaluation made available.

Exposure Limit

Examples of common noise levels:

Typical Noise Level dB(A)

180

140

130

120

115

110

102 100

95

90

80

70

60

50

40

30

20

0

Action to take:

- 1. Maximum level allowed that must not be exceeded.
- 2. Where exposure to noise varies markedly from day to day the weekly exposure level should be measured and used in place of daily noise exposure.

Exposure Le	evels:
Daily 8hr	80dBA
Peak	135dBC

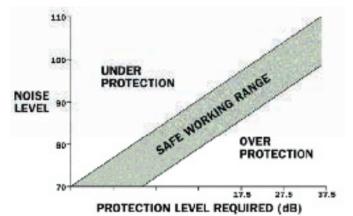
Exposure Levels: Daily 8hr 85dBA Peak 137dBC Exposure Levels: Daily 8hr 87dBA Peak 140dBC

Hearing Protection

As with all PPE items it is about selecting the correct product for the hazard.

So first you need to identify the hazard.

In this case it is the noise level. However it is not just about how noisy it is. It is about how long the workers are exposed to those noise levels.



958

taken into consideration.		
	Noise level dB	Max. exposure per 24 hours
	140	NO EXPOSURE
	127	1 second
	124	3 seconds
	118	14 seconds
	112	56 seconds
	109	112 seconds
	103	7.5 minutes
	100	15 minutes
	97	30 minutes
	91	2 hours
	88	4 hours
	85	8 hours

υ ersonal Protection

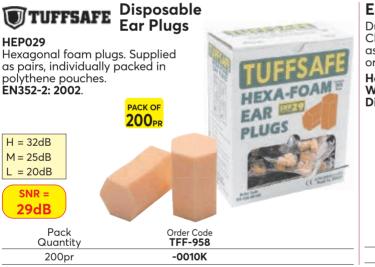
Now you know the risk it is about selecting the correct product to bring the worker into the safe working range.

Under protection WILL result in wearer's damaging their hearing.

Over protection could result in wearers being put at risk by not hearing communications, a moving vehicle or even the fire alarm.

The safe working range is between 70 to 75 dB.

Ear Plug Dispenser


Order Code TFF-958

-1740K

Durable design. Simple and easy to refill. Clear plastic lid enables at-a-glance assessment of contents. Free standing or wall mountable. Height: 330mm. Width: 340mm. Diameter: 230mm.

Disposable Ear Plugs

Detectable Reusable Ear Plugs Easy to fit and comfortable to wear for Disposable ear plugs for comfortable hearing without impairing normal effective hearing protection. Ideal for the communication. Tapered design makes food manufacturing industry where blue is fitting easier and helps classified as a form a comfort non-food co' fit. SNR Rating Conformanc 34dB. Conforn EN352-2: 20 EN352-2: 2002 PACK OF 50_{PR} PACK OF 200_{PR} SNR = SNR = 34dB 37dB Pack Order Code TFF-958 Pack Order Code TFF-958 Type Type Qty Quantity Corded 200pr -1640K Corded -1720K 50 50 Years of Keeping Industry Working

Ear Defenders

With flexible reinforced plastic headbands ABS cups and PVC cushions. Conform with EN352-1: 2002

799

© 2020

Respiratory Protection Respiratory Protection

Wear face

Hazards

Oxygen-deficient atmospheres, dusts, gases and vapours.

Options

Wide range of products from simple filtering facepieces through to self-contained breathing apparatus.

What the law requires

mask

Under the current legislation, employers are responsible for identifying potential hazards in the workplace

- To provide suitable respiratory equipment for employees
- To provide suitable and appropriate training for employees
- To ensure the equipment is correctly maintained and records are kept
- **FFP1** Low-levels of nontoxic fine dust (up to 4x APF), oil or water based mists typically found during and sanding, drilling and cutting.
- **FFP2** Moderate-levels of fine dust (up to 10x APF), oil or water based mists typically found when mixing plaster, cement, sanding and wood dust.
- **FFP3** Moderate-levels of fine dust (up to 20x APF), oil or water based mists, typically hazardous pharmaceutical powders, silica, biological agents/fibres, waste.

Assigned Protection Factor (APF)

The level of protection a respirator can be expected to provide if it is functioning properly and the user is wearing it correctly. APF is scored via a number, allowing users to gage how much contaminant they are expected to inhale while wearing the respirator. So, wearing **Respiratory Protective Equipment (RPE)** with an **APF** of 10 will reduce the exposure to the wearer by a factor of 10 in other words the wearer will inhale one-tenth of the amount of contaminate present in the air.

OELs

The occupational exposure limit values are the average concentration of a substance in the air in the workplace, up to which no damage (chronic or acute) is to be expected if employees work there for eight hours a day for five days a week.

Applicable Standards

EN149:2001	relates to disposable respirators. Additional markings, such as FFP1, FFP2 or FFP3 indicate the protection level offered - the higher the number, the better the protection.
EN140	is the European standard that covers the technical specifications for both Half & Quarter masks. A half mask is defined as covering the nose, mouth and chin, and a quarter mask as covering only the nose and mouth.
EN136	is the standard that covers the technical specifications for Full Face Masks.
EN405:2002 +A1:2009	valved filtering half masks to protect against gases and particles.

The Hazards

A workplace respiratory is anything that impairs an employee's ability to breath freely and safely. Threats may include:

- **Dust** Formed when solid matter is broken down into fine airborne particles.
- Mists Tiny liquid droplets formed by condensation or as a result of such processes as spraying.
- **Metal fume** Fine airborne particles produces from metal that has been vaporised at a high temperature and then condenses e.g. through welding processes.
 - Vapours Gases formed when solids or liquids evaporate at room temperature.
 - Gases Often undetected, spread freely and quickly through the air.

800 50 Years of Keeping Industry Working

Respirator Selection

Ideally Training should cover:

The type of RPE being provided

• Why **RPE** is necessary

• Hazards and their risks

• Why fit testing is required

How to wear and check

equipment correctly

and effects

How it works

(if relevant)

959[®]

• Fit checking before use

maintenance / record

• How to clean and store

• What to do if there's a

problem with any RPE

Responsibilities of both

employer and employees

· Details of required

keeping

Training

If a respirator is not worn correctly it will not provide the required protection, so it is vital that you integrate **RPE** use into normal workplace activities and provide adequate training. It is often best, if possible, to give a choice of several adequate and suitable **RPE** to wearers to so they can select the most comfortable. All people involved in the selection, use, storage and maintenance (if necessary) of **RPE** require training.

Face piece fit testing is a way of checking that a tight-fitting face piece (typically disposable and reusable respirators, although this can include half and full face masks, including those that form part of an air-fed or powered respirator) fits the wearer's facial features and forms an adequate seal. Fit testing of all tight fitting respirators is mandatory in the UK.

How to Choose Respiratory Protection

Identify the Hazard

identity the hazara	
Particulate Hazards	- Dust, mist, fume, vapour, gas.
Gas and Vapour Hazards	- Solvent vapours or acidic gasses
Oxygen Deficient Atmospheres	- Often found in confined spaces where oxygen is consumed by heavier than air vapours

Types of Hazard

Consider the task that is bein	g under taken
Process Generated	 Dust from sanding wood, cutting, heating or welding processes generate harmful contaminates into the air in the form of dust and fumes
Other workplace Hazards	 Such as bottled gasses, solvents or chemicals will come with a Material safety data sheet (MSDS) which should provide information on health hazards, substances contained in the product and the type of RPE required for it's Safe use.

Risk Assessment

• What is the exposure limit?

Check MSDS certificates do they provide guidance on the required APF

Does the contaminate have a prescribed OEL (Occupational Exposure Limit. If there is no advice on the required APF in the MSDS you can calculate the required protection level using the OEL and quantity of contaminate in the air

If there is more than one hazard present in the air for example dust and gas. You will need to find out the protection factor required for each and choose the appropriate **RPE** based on the highest protection factor required

Selecting the Correct Respirator

FFP disposable, half or full-face mask, powered or air-fed - Please see types of respirator for guidance

Appropriate Training

It is essential to train every user in the correct fitting, use, care and maintenance of the respirator

Types of Respirator

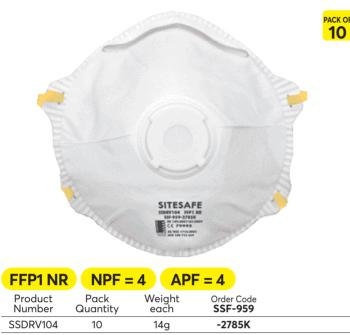
Disposable Respirators

See pages 802 - 803

• Protect the wearer from particulate hazards

- Valved or unvalved options valved respirators reduce the effort to exhale and are cooler to wear which will reduce the misting of eyewear
- Many disposable respirators feature an adjustable nose clip for added user comfort

Disposable Respirators - FFP1


FFP1 NR D: The dolomite test is an optional test under norms **EN 149:2001 +A1:2009**. Those respirators which pass the dolomite clogging test are proved to provide a more comfortable fit and resist clogging for longer.

Particulate Respirator Mask - Valved

SSDRV104

Conforms to **EN149 2001 FFP1** and **AS/NZS 1716:2003** standards. Provides protection against non-toxic harmful solid and liquid in concentrations up to 4 x NPF or 4 x APF, such as calcium carbonate, china clay, cement, cellulose, sulphur, cotton, flour, carbon, ferrous metals, vegetable oils and soft wood. Percommended applications for textile industry, craftwork, iron ar

Recommended applications for textile industry, craftwork, iron and steel industry, mining, woodworking etc. Exhalation valve to reduce hot air build-up. Maintenance-free (disposable).

Particulate Respirator Mask SSDRM104

Conforms to EN149 2001 FFP1 standards. AS/NZS 1716:2003.

Polypropylene (PP) outer layers provide smooth lining and avoid loose fibres. Fringe seal avoids open layer around the edges, latexfree synthetic rubber head strap. Contour design ensures the compatibility of glasses/goggles and reduces fogging. Soft closecell nose foam and adjustable nosepiece ensure custom shape and increases wearer's comfort and acceptance. For protection against low-to-average toxicity harmful solid, liquid and smoke.

TUFFSAFE Particulate Respirator Mask -Valved

DRV104

Conforms to **EN149:2001 + A1:2009 FFP1 NR D** standards. Collapse-resistant double shell, made to withstand hot and humid conditions. Fringe seal avoids open layers around the edges. Latex-free synthetic rubber head strap and contour design ensure the mask can be worn with glasses/goggles with the close fit helping to reduce fogging. Fitted with an exhalation valve for extra comfort in hot and demanding conditions allowing easy breathing and speaking. Soft close-cell nose foam and adjustable nosepiece for a custom shaped fit, increases wearer's comfort and acceptance over extended periods of use.

Particulate Respirator Mask DRM104

Conforms to **EN149:2001 + A1:2009 FFP1 NR D** standards. Collapse-resistant double shell construction made to withstand hot and humid conditions. Fringe seal avoids open layer around the edges. Latex-free synthetic rubber head strap. Contour design ensures the compatibility of glass/goggles and reduces fogging. Soft close-cell nose foam and adjustable nosepiece ensure a custom shaped fit and increased wearer comfort and acceptance over extended periods of use. For protection against non-toxic harmful solids and liquids.

Disposable Respirators - FFP2/FFP3

959

FFP2 NR D: The dolomite test is an optional test under norms EN 149:2001 +A1:2009. Those respirators which pass the dolomite clogging test are proved to provide a more comfortable fit and resist clogging for longer.

5

provide smooth lining and avoid

loose fibres. Adjustable

headstrap ensure the

minimum leakage.

best seal with

Contour design

compatibility of glasses/goggles and reduces fogging. Full

facial close-cell nose foam and adjustable

With exhalation valve.

Pack

Quantity

5

ensures the

nosepiece

FFP3 NR D

Product

Number

DRV350

provide smooth lining and avoid loose fibres. Adjustable headstrap Contour design ensures the compatibility of glasses/goggles and reduces fogging. Full facial close-cell nose foam and adjustable nosepiece With exhalation valve.

NPF = 10 APF = 20 VALVED FFP3 Product Pack Order Code

Weight each SSF-959 Number Quantity SSDRV350 5

-2790M 24q

50 Years of Keeping Industry Working © 2020

5

NPF = 50 APF = 20 VALVED

Order Code TFF-959

-2140K

960 Eye & Face Protection

Hazards

Chemical or metal splash, dust, projectiles, gas and vapour, radiation.

Options

Safety spectacles, goggles, face screens, faceshields, visors.

Eye protection must be worn

You can jeopardise your sight in less than the blink of an eye, so always use safety eyewear as protection when hazardous conditions exist. Areas where there are possible chemical splashes, sparks and ultraviolet radiation are all considered high risk.

What the law requires

The wearing of eye and face protection in hazardous areas is a requirement under regulation 4 of the Personal Protective Equipment at Work Regulations 1992. This requires employers to provide suitable personal protective equipment to employees exposed to health and safety risks.

Applicable Standards

- EN166 standard covering safety eyewear offering protection from impact hazards caused by fast moving particles.
- EN170 standards applying to ultraviolet filters. Transmittance requirements and recommended use.
- EN172 specification for sunglare filters used in personal eve-protectors for industrial use.

European Standards state safety eyewear must be approved to BS EN166.

Safety eyewear must be marked to identify the protection offered. Safety eyewear must offer eye protection from:

- impact hazards caused by fast moving particles.
- operations such as chipping, grinding and cutting.
- accidental airborne hazards eg. grinding wheel failing or snapping a cutting tool.

The potential impact speed must be assessed before selecting the standard protection. If the hazard could dislodge safety glasses then goggles/face shield should be selected. When chemical splash is a consideration unvented goggles must be selected to give full eye enclosure protection.

EN 166 Markings

Standard that all Eye & Face Protection products must conform to.

1	This number specifies the clarity of the lens. We only recommend and sell category 1 which is the best rating.	
F	This denotes the impact protection : F = Low energy impact (45 m/s B = Medium energy impact (120m/s) A = High energy impact (190m/s) Standard safety glasses will normally only be able to reach an F rating as the impact energy transfers through the lens onto the face. Some safety glasses with a foam seal can now reach a B rating. Goggles and face shield can should have a B rating. When grinding you will need a product with a B rating.	
т	Frame withstands impacts at extreme temperatures.	
К	Lens are coated, making them resistant to surface damage (anti-scratch).	
N	Lens is resistant to fogging. This is different to products that claim to be resistance to misting.	
NB. When grinding we would recommend B (medium impact energy) impact protection. A face shield is best suited when grinding.		

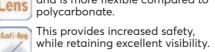
Quick Reference

Through the eye and face protection range, there are a number of quick reference logos to help you choose which level of safety is right for you. Below are the logos and their meanings.

Lens

cetate

Adjustable frames for a superior fit.



Wraparound single lens provides unobstructed field of vision.

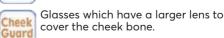
Anti-dust

Resistant to flames and heat - not flame-proof.

Polycarbonate lenses are more

most types of lens.

impact-resistant and lighter than


Has a lower impact energy rating

and is more flexible compared to

Gives a level of protection against harmful UV rays.

Extended brow guard moulded into Brow the top of the lens gives a near Guard perfect orbital seal against debris.

For greater protection from debris Side towards the side of the eyes.

not chemical proof.

Shields

Scrutci

Designed to minimise dust

contamination.

Hard coated for excellent durability and scratch resistance resulting in unobstructed viewing.

Resistant to chemical splashes -

Contains public sector information published by the Health and Safety Executive and licensed under the Open Government Licence.

Eye & Face Selection

Standard Safety Glasses

Safety glasses are designed to provide protection and clarity of vision. The majority of the products are wrap around style which minimise the gaps between the glasses and the wearers face reducing the risk of an accident.

See pages 806 - 807

Accessories

Product to protect your safety glasses and prolong their life.

Goggles

Goggles can provide additional protection levels than safety glasses. Higher impact levels at B rating. They also provide protection against dusts and liquid splashes.

See page 808

Welding Helmets

Provides protection against wide range of bright light produced when welding. Wide range from stand alone helmets with fixed single lens to products that react to the Arc being stuck and products that work with PAPR equipment to provide eye and respiratory.

See page 809

50 Years of Keeping Industry Working

Personal Protection

960[§]

OS20_TH_0806.indd 1

Safety Glasses TUFFSAFE Safety Glasses **Safety Glasses** Clear wrap round polycarbonate lens. Soft side arms and temples for improved grip and Clear polycarbonate lens with adjustable arms comfort. for a more comfortable fit. Lens EN166 1F EN166 1F Frame Colour Lens Type Clear Black **Safety Glasses** Order Code TFF-960 Lens Frame Colour Type Black -1560K Clear from indoors **Safety Glasses** Wrap EN166 1FT Arouni Clear wrap round polycarbonate lens with ratcheted arms for greater adjustment and fit. Clear for normal working, I/O (Indoor/Outdoor) ens idea for forklift truck drivers who move frequently from indoors to outdoors. EN166 1FT -1960K Lens Frame -1980K

Lens Type	Frame Colour	Order Code TFF-960	
Clear I/O	Black/Blue Black/Blue	-1960K -1980K	

Safety Glasses

Clear wrap round polycarbonate lens with adjustable arms Frame for a more comfortable fit. Clear for normal working, Wrap smoke f EN166 1 Around

Black

-1580K -1600K Black 50 Years of Keeping Industry Working © 2020

960

Wrap

ens

Order Code TFF-960 -1940K

Wrap Clear wrap round polycarbonate lens. Solid side arms providing robustness and comfort. Clear for normal Around outdoor) idea for for when working outside, I/O (Indoor/ Outdoor) idea for forklift truck driver when move frequently Lens

Safety Glasses

CHARMEN

(UNIUM) Clear wrap round polycarbonate lens with adjustable arms for a more comfortable fit. Clear brow guard for improved vision when I Lens EN166 1F

Order Code TFF-960 Lens Frame Туре Colour -1660K Clear Black

KENNED **Soft Spectacle Case**

With spring opening.

Order Code KEN-960 -9560K

Spectacle Neck Cord With adjustable side buckle.

Order Code KEN-960 -9620K

υ ersonal Protection

Clear

Smoke

Safety Goggles

Safety Goggles

Have a wide field of vision, built-in brow and cheek protection and a soft PVC frame. Provide UV protection. Fitted with wide anallergic elastic headband and a one-piece replaceable scratch resistant, anti-mist clear lenses.

Tiger

960

Medium energy impact protection. Smoke coloured frame with a polycarbonate lens. The lens is resistant to splashes of molten metals and penetration of hot solids. The frame has an indirect ventilation system and is resistant to liquids. EN166 B

Personal EN170

ctio

Ò

Ó

KEN-960-8140K

Safety Goggles

Scorpion - Medium energy impact protection. Clear frame with polycarbonate lens. Resistant to splashes of molten metals and penetration of hot solids. Lion - Low energy impact protection. Clear frame with acetate lens.

EN166 EN170

Туре	Lens (Scratch resistant)	Frame Colour	Order Code KEN-960	
Scorpion Lion	Polycarbonate Acetate	Clear Clear	-8070K -8080K	

Chemical Splash Resistant, 📻 Anti-Dust Safety Goggles **(11**)

Anti-'chemical-splash' and impact resistant. Indirect ventilation. EN166

50 Years of Keeping Industry Working

C€♡ **Optical Class** Mechanical Strength B

© 2020

SSF-960-0520K

808

Safety Goggles

Condor

EN170

CE

ens

Medium energy impact protection. Manufactured from flame resistant material. Fitted with a flexible nose bridge and large peripheral viewing area. 2mm anti-mist, scratch resistant clear polycarbonate lens. Can be fitted over most prescription glasses. EN166 F

Lens Type	Frame Colour	Order Code KEN-960	
Scratch Resistant	Red	-8130K	
Spare Lens		-8120K	

Safety Goggles

Cobra

Low energy impact protection. UV protection against electrical arc discharges. Ultra light adjustable nylon blue frame. One-piece, scratch resistant, anti-mist clear polycarbonate lens. **EN166**

EN170

ens

KEN-960-8060K

Safety Goggles

Anti-dust and impact resistant. Direct ventilation. EN166

ens

Optical Class Mechanical Strength B

SSF-960-0500K

Welding Helmets

Personal Protection

Colour	Order Code KEN-885	
Black	-5100K	Ł
Union Jack	-5120K	Ł

Spares to suit KWH100 Helmets

Lens covers protect the LCD cartridge unit from weld spatter. Type Pack Order Code Qty KEN-885

	~~,		
Inner Lens Cover	10	-5160K	Ł
Outer Lens Cover	10	-5165K	Ł
Adjustable Headband	1	-5180K	Ł
Sweatband	1	-5190K	Ł

Welder's Helmets

The entry level to the Kennedy helmet range, both lift up over brow strap when not in use and accept plain and tinted lenses which are available separately.

50 Years of Keeping Industry Working

Lenses to Suit Helmets & Shields To protect the user from UV rays

and weld spatter. *Standard UK size.

Lens Size	Туре	Colour/ Shade	Order Code KEN-885
41/4" x 31/4"*	Green Shaded	Sh. 8 Sh. 9 Sh. 11 Sh. 12	-7412K -7413K -7415K -7416K
4 ¹ ⁄ ₄ " x 2"	Green Shaded	Sh. 9 Sh. 10 Sh. 11	-7399K -7402K -7401K
$4^{1/4''} \times 2''$	CR39 Antisplatter Glass	Clear Clear	-7408K -7409K
	Polycarbonate	Clear	-7426K
110 x 90mm	Antisplatter	Clear	-7448K

961 Hand Protection

Hazards

Abrasion, temperature extremes, cuts and punctures, impact, chemicals, electric shock, radiation, vibration, biological agents and prolonged immersion in water.

Options

Gloves in a range of styles, lengths, materials and coatings to provide specific kinds of protection.

What the law requires

Safety gloves

must be worn

Under regulation 4 of the **Personal Protective Equipment at Work Regulations 1992**, it is the employer's responsibility to identify potential hazards in the workplace and if these cannot be rectified by any other means, then personal protective equipment must be provided free of charge and with appropriate training.

Food Symbol

Products that carry the food contact symbol are suitable for use with all food categories (Dry foods, aqueous foods, acidic foods, alcoholic foods and fatty foods). This has been established through conducting tests according to the draft European Standards for food contact migration DD ENV 1186 series.

Glove Categories

Simple Design - Category 1

Gloves with this designation offer protection against light cuts, contusions, abrasions and mild detergents. Suitable for areas of minimal risk' where the effects on hands without gloves would be easily reversible or superficial. These products are unmarked and selfcertified.

Intermediate Design - Category 2

Gloves with this designation offer protection against heavier cuts, contusions, abrasions, tears and punctures. Suitable for areas of specific risk: abrasion, blade cuts, tear and puncture. The performance of the glove against these risks is listed below the symbol as shown below.

Complex Design - Category 3

Using a Tape Measure and the Sizing Guide

approximate glove size.

Wrap a tape measure around your hand at the widest point

(usually the knuckles) and make a loose fist. Note that measurement,

round it to the nearest inch and refer to the chart below to find your

For areas/applications that can seriously or irreversibly harm the health. Such products, in addition to the CE type test, will also have to be either produced under an approved quality system OR be typed tested on an annual basis.

EN388 IS CHANGING from EN388:2003 to EN388:2016

The CUT resistance test is the biggest change. Gloves can continue to be sold under both versions of the standard until 2023 After 2023 only gloves to EN388:2016 will be able to be legally sold.

EN388:2003 - Coupe test results			EN388:2016 - ISO test results		
Level	Blade cut resistance (Index)	Cromwell classification	Level	Straight blade cut resistance (N)	Cromwell classification
1	>1.2	General purpose glove	А	2	General purpose glove
2	>2.5		В	5	
3	>5.0	Low to medium cut risk	С	10	Low to medium cut risk
4	>10.0		D	15	
5	>20.0	High cut risk	E	22	High cut risk
Please note: As the test is different and the construction of the gloves		F	30	Very high cut risk	

could be different, gloves previously classified as a Cut 3 glove could

Glove Sizing

only.

have different levels on the new test and this could be a higher classification that a Cut 4 glove, or could be lower than a Cut 2 glove.

50 Years of Keeping Industry Working

Place you right hand as shown, with your index

finger against the black line. The measurement

that follows the right side of your hand is your

Glove Size XS

Sizing Gauge 6

approximate glove size. This is a general guide

Glove Selection

Glove Selection

- Hazards Abrasion, temperature extremes, cuts and punctures, impact, chemicals, electric shock, radiation, vibration, biological agents and prolonged immersion in liquid.
- **Options -** Gloves in a range of styles, lengths, materials and coatings to provide specific kinds of protection.

General Purpose

General protection against various hazards including tear, puncture and abrasion.

See pages 816 - 818

Cut Resistant

Protects wearers from cut injuries from sharp objects such as knives or burrs on metal.

See pages 812 - 813

Nitrile Coated

General purpose gloves ideal for handling oily components with medium dexterity.

See page 814

PU & Latex Coated

General purpose gloves with great dexterity. Ideal for handling small dry or slightly damp components.

See page 815

Disposable Gloves

Nitrile

Range of gloves offering protection from small amounts of oil based chemicals.

Vinyl Low allergens and low cost.

Latex Provides wearers with comfort while remaining dexterous.

See page 819

Thermal Protection

Suitable for extreme weather and out door applications such as rail, transport and automotive.

See page 820

Welding

Protects wearers hands from the hazards of welding and extreme heat.

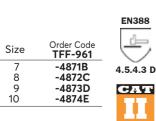
See page 821

961§

Personal Protection

50 Years of Keeping Industry Working

Cut Level E & D Gloves


Cut Level D Gloves **Cut D PU Palm Coated Gloves**

- The PU palm coating provides excellent dexterity and grip when handling dry components
- Additional thumb crotch support provides extra protection in high wear areas

Size	Order Code TFF-961
6	-2230A
7	-2230C
8	-2230E
9	-2230G
10	-2230J
11	-2230L

PU Coated Glove

- Cut resistant 13 gauge HPPE
- and glass fibre liner • Designed for handling dry components that have
- sharp edges or burrs

© 2020

812

TUTTEAL

50 Years of Keeping Industry Working

Nitrile Coated Gloves, Cut E, Grey/Black

- The sandy nitrile double palm coating provides excellent grip when handling oily or greasy components
- Additional thumb crotch support provides extra protection in high . wear areas

Order Code TFF-961

-2239C

-2239E -2239G -2239J

-2239L

8

9

new

Nitrile Palm Coated Gloves, Cut D, Black/Grey

 The nitrile palm coating provides excellent grip when handling oily or greasy components Additional thumb crotch support provides extra protection in high . wear areas



Size	Order Code TFF-961
7	-2232C
8	-2232E
9	-2232G
10	-2232J
11	-2232L

Sleeve

 Polyamide blend of fibres producing protection with comfort

Cut Level C & B Gloves

961[®]

Cut Level C Gloves

TUFFSAFE Nitrile Cut Resistant Gloves

T-5002

• Black

Size

- · Coating material: Nitrile
- · Coating coverage: Palm side
- Cut resistant material: HPPE

· Coating material: Nitrile

• Cuff type: Elasticated

· EN420:2003 + A1:2009

· EN388:2016 4.X.4.3. B

· Coating coverage: Palm side

Additional thumb crotch protection

- Cuff type: Elasticated
- Additional thumb crotch protect
- EN388:2016 3.X.4.2. C

it Gloves	new
grip when ints.	
ction	

 handling Black Coatir Coatir Cut res Cuff ty Addition 	g oily or grea ng material: N ng coverage: sistant mater (pe: Elasticat	Palm side ial: HPPE ed rotch protectio	
Size 6 7 8 9 10 11	Order Code TFF-961 -2217A -2217C -2217E -2217G -2217J -2217J -2217L	EN388 3.X.4.2 C	
Cut	Level E	3 Gloves	

HPPE Cut Resistant Gloves T-2000

A 13 gauge cut level C glove with excellent dexterity and dry grip.

- Grey
- · Coating material: Polyethylene (PU)
- Coating coverage: Palm side
- Cut resistant material: HPPE/Fiberglass
- Cuff type: Elasticated • EN420:2003 + A1:2009
- · EN388:2016 3.X.4.2. C

nev

	τ
	D
١	2
	Ő
	Ξ
	Ω
	J
	2
	H H <t< td=""></t<>
	Ō
	0
	đ.
	Б

	Size	Order Code TFF-961	
	6	-2219A	
	7	-2219C	EN388
	8	-2219E	
	9	-2219G	d
	10	-2219J	
	11	-2219L	\sim
1			3.X.4.2 C

Cut Resistant Gloves N10658E

A 13 gauge cut level B glove with excellent dexterity and dry grip.

- Grey Coating material: Polyurethane (PU)
- · Coating coverage: Palm side
- Cut resistant material: HPPE/Fiberglass
- Cuff type: Elasticated
- · EN420:2003 + A1:2009
- EN388:2016 4.X.4.1. B

Order Code TFF-961 -2212A -2212C -2212E -2212G -2212J -2212J	EN388
-2212L	4.X.4.1 B

PU Coated Gloves Orange PU

13 gauge seamless HPPE liner

FN388

4.X.4.3 B

Order Code

TFF-961

-4861B

-4862C

-4863D

-4864E

САТ

Size

7

8

9

10

 Designed for handling dry components that could produce a cut risk

50 Years of Keeping Industry Working © 2020

813

194 F

2156 2 6030

TIASTIUT (

30

6 -2210C -2210E -2210G 8 10 -2210J -2210L 11

Order Code TFF-961

-2210A

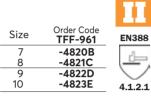
Nitrile Coated Gloves

• 13 gauge seamless HPPE liner with a nitrile foam palm coating

EN388

4.X.4.3 B

· Designed for use when handling oily, greasy components with a cut risk


Nitrile Coated Gloves

Palm Coated Gloves 13 gauge seamless nylon comfortable breathable liner with a Nitrile Specifically designed to aid grip and protect the hands when handling oily, greasy components

961

👿 TUFFSAFE

Palm Coated Gloves

Designated as intermediate design

сат

EN388 САТ 3.1.2.1 Order Code c

Size	TFF-961
6	-6401A
7	-6402B
8	-6403C
9	-6404D
10	-6405E

Fully Coated Gloves

- Excellent resistance to abrasion, cuts and snags, punctures, grease and oil • Knitted wrist
- Tough general-purpose gloves

814

50 Years of Keeping Industry Working © 2020

Fully Coated Gloves
• With extra wrist protection

Size: 10

Fully Coated Gloves

• A lightweight, fully coated for all-round protection • Extra grip

³/₄ Coated Gloves

- Open back knitted wrist
- Excellent resistance to abrasion, cuts and snags, punctures, grease and oil • To keep hands cooler in warm conditions

Size: 10

Latex & PU Palm Coated Gloves

50 Years of Keeping Industry Working

Personal Protection

Offer

33 170

anvaus

815

© 2020

General Purpose Gloves

• Selected split leather one-piece backs • Fully lined, two-piece lining, fleece hand

Cotton and Chrome Leather Gloves

Personal Protection

961[®]

50 Years of Keeping Industry Working © 2020

50 Years of Keeping Industry Working

818

Personal Protection

Order Code

SSF-961

-7034E

Size

S

-7044E

-7047H

S

XL

50 Years of Keeping Industry Working

PACK OF 100

Nitrile Gloves

CAT

Size

S

М

XI

TUFFSAFE Nitrile Disposable Gloves

Premium quality non sterile

Suitable for medical use and

examination gloves

for the food industry Surface finish: Textured finger tips. Length: 24cm. Thickness: 4.5mm.

EN374-2

Order Code TFF-961

-2322K

-2324K

-2326K

-2328K

EN374-3

-7035F

-7036G

-7037H

© 2020

М

XL

Disposable Gloves

Nitrile Gloves

- · Gloves with excellent diamond grip finish, increased tensile strength, optimum protection in tough environments and superior tactile sensitivity.
- Suitable for medical use and for the food industry

Latex Gloves

Personal Protection

961[®]

Thermal Protection Gloves

961

- Arctic Riggers
 Selected split leather palms, knuckles and finger tips
 Cotton drill backs & 2" reinforced safety cuffs with arterial Protection against low impact
- Thinsulate[®] lined with a knitted wrist for extra protection against cold Size: 9.

Personal Protection

TFF-961-1900K

Towelling Gloves

Thick close loop pile gloves which cushion and protect
Gives good insulation against heat or cold Size: 10.

Kevlar® Sleeves

- Provides level 3 protection against cuts
 - Good protection against heat

CAT	
EN388	EN407
Ŀ	٢
1.3.4.X	X.1.X.X.X.X

Length	Туре	Order Code TFF-961	
255mm/10" 355mm/14" 455mm/18" 600mm/24"	With Thumb Hole	-4101A -4102B -4103C -4104E	
255mm/10" 355mm/14" 455mm/18" 600mm/24"	Without Thumb Hole	-4106G -4107H -4108J -4109K	

Towelling Gauntlets

 Thick close terry-towelling loop pile gloves which cushion and protect, also giving good insulation against heat or cold Size: 10.

EN12477 - Welding Gloves

EN12477:2003 defines relevant requirements and test methods for protective gloves for use in manual metal welding and allied processes. Under this standard, all gloves to be used for welding metal welding and allied processes. must be independently tested and certified by an official notified body, and must meet certain performance levels.

Type B gloves are recommended where high dexterity is required, e.g. TIG welding. **Type A** gloves are recommended for all other welding processes. The type and all appropriate markings (Pictograms) will be marked on the product, its packaging and the user instructions.

EN12477:2003 Minimum Performance Levels for Welding Gloves

ТҮР	ΕA	TYPE B
MECHANICAL RISKS (as per EN388:2003) Abrasion Resistance Leve Blade Cut Resistance Leve Tear Resistance Leve Puncture Resistance Leve	el 1 el 2	Level 1 Level 1 Level 1 Level 1
THERMAL HAZARDS (as per EN407:2004) Burning Behaviour Resistance	el 1 el 2	Level 2 Level 1 Level X Level X
Splash Resistance Lev Large Molten Metal Splash Resistance Lev		Level 2 Level X
GENERAL REQUIREMENTS (as per EN420:20 Glove Dexterity	003)	Level 4
ELECTROSTATIC DRODERTIES - Optional (as	DOT EN	11/0-2.1007

ELECTROSTATIC PROPERTIES - Optional (as per EN1149-2:1997) Dry Conditions Test (for Arc Welding) 10⁶ ohms 10⁵ ohms

GLOVES WHICH DO NOT COMPLY SHOULD NOT BE USED FOR WELDING PURPOSES

TUFFSAFE Leather Gauntlet

• Full five finger welder's gauntlet manufactured from select split leather with a full cotton lining with a one piece back

- Reinforced palm and thumb for increased wear with no exposed seams to burn
- Kevlar[©] sewn throughout

Size: 10.

Welding Gloves

961[®]

Personal Protection

TUFFSAFE Leather Gloves

 Soft, high quality nappa leather palm and stiff 150mm chrome leather cuff

· Offers a superb feel and good durability for precision welding 360mm overall length

Size: 10.

50 Years of Keeping Industry Working © 2020

Workwear

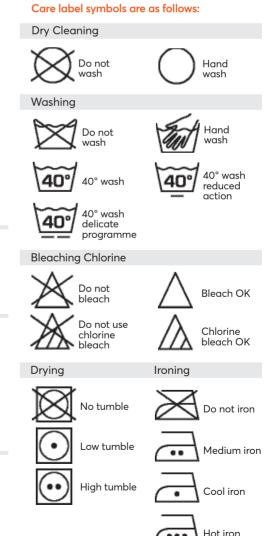
There are many workplace areas where body protection may be required, ranging from coping with the elements when working outdoors through to working with hazardous substances or on a construction site.

What the law requires

Under regulation 4 of the **Personal Protective Equipment at Work Regulations 1992**, it is the employer's responsibility to identify potential hazards in the workplace and if these cannot be rectified by any other means, then personal protective equipment must be provided free of charge and with appropriate training.

EN Safety Standards

Garments featured throughtout the workwear section of this catalogue carry icons denoting the relevant **EN safety standards** to which they comply.


Look after your workwear

When it comes to caring for your clothing, always read the inside label. It's your guide to the dos and don'ts when cleaning your garments.

The Perfect Fit

It's vital to ensure clothing fits correctly to avoid compromising your safety or comfort.

The following is a quick guide to acquiring accurate measurements for your collar, chest, waist, hips and legs. We recommend wearing light, close-fitting clothes when taking measurements and always use a flexible cloth measuring tape.

Collar

Measure fully around your neck, just above the collarbone. Take the measurement and add $^{1\!/}\!2''.$

Chest

Measure across the fullest part of the chest/bust, ensuring you keep the tape straight across your back and under your arms.

Waist

Measure across the narrowest part of the waist, keeping the tape straight.

Hips

Measure across the widest part of the hip, again keeping the tape straight.

Legs

Measure the inside leg from the crotch to where you prefer the trouser leg to end, usually just below the ankle.

Personal Protection

OS20_TH_0823.indd 1

Hi-Vis Clothing

5-in-1 Hi-Vis Waterproof 👿 TUFFSAFE & Breathable Coats

Features an outer layer, detachable inner jacket, detachable inner sleeves and detachable hood

with press stud storm flap protection. Fleece collar.

Outer Layer: Bands over each shoulder meet EN20471 Class 3/3 requirements and EN343 Class 3/3. Two way zip

≞

EN 20471

External phone pocket and clear ID pouch. Two 'D' rings. Zip security pocket. Two external pockets.

Adjustable Hook-n-Loop cuff straps.

Inner Layer/Body Warmer: One band over each shoulder meeting EN20471 class 3/2 requirements. Two way zipper for attaching to

outer layer or wearing independently. Fleece collar. External phone pocket with 'D' ring. Two external side pockets on both hi-vis and

quilted layer. Elasticated cuffs. Removable zipped sleeves to create body warmer.

C E These garments comply with the requirements of Directive 89/686/EEC and the above reference standards.

Size	Order Code TFF-962
S	-8010A
М	-8011B
L	-8012C
XL	-8013D
2XL	-8014E

Breathable Hi-Vis Coats

Certified to EN20471 Class 3. Certified to EN343 Class 2 breathing fabric. Polyester with PU coating. Concealed hood, full zip front with double storm flap. Nylon/polyester quilt lining, self double yoke back. Lower pockets with flap and elasticated storm cuffs. Stitched and welded seams. Reflective material.

⁸²⁴

50 Years of Keeping Industry Working © 2020

Waterproof Hi-Vis Coats

Satin yellow PU coated polyester with fixed nylon quilted lining. Heavy weight two way zip with studded storm flap knitted storm cuffs, concealed hood with drawstring. Fully taped seams.

PREN343 1993:

Class 3 (highest) water p water vapour resistance EN20471 1994: Class 3 area of fluoresce background and retro reflective tape. EN20471 1994: Class 2 retro reflective tape performance.

CE These game.... These garments requirements of Directive 89/686/EEC and the above reference standards.

Size	Order Code Yellow	TFF-962 Orange
М	-4011B	-4031B
L	-4012C	-
2XL	-4014E	-4034E

Breathable Hi-Vis Trousers

Certified to EN20471.

Breathable fabric. Polyester with PU coating. Overtrousers with elasticated waist. Studded ankles. Reflective material.

Waterproof Hi-Vis **Trousers**

Satin yellow knitted polyester lightweight overtrousers with elasticated waist, Hook-n-Loop front fastening and fully taped waterproof seams. Complete with two 50mm reflective bands around each leg.

PREN343 1993: Class 3 (highest) water penetration; Class 1 (lowest) water vapour resistance. EN20471 1994: Class 1 area of fluorescent

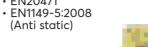
background and retro reflective tap FN20471 1994: Class 2 retro reflec tape performance.

These garments comply with the requirements of Directive 89/686/EEC and the above reference standards.

Size	Order Cod	de TFF-962
Size	Yellow	Orange
М	-	-4041B
L	-	-4042C
XL	-	-4043D
2XL	-4024E	-4044E

SITESAFE Hi-Vis Sweatshirts Orange

Hi-vis sweatshirts designed to keep wearers safe whilst being warm and comfortable. 100% polyester with rib neck and silver reflective tape around the chest, waist, back sleeves and shoulders.


Hi-Vis Fleece Jacket Orange

100% polyester. 3M silver reflective tape around the waist, shoulders and back. Elasticated collar and cuffs ensure wearer comfort.

Hi-Vis Clothing

Hi-Vis Coats

- SFJ01
- Material: Polyester
 300 Denier construction
- 120gsm
- Anti static
- Waterproof and wind resistant
- No pockets
 EN20471

1			EN 20471
100 B	Size	Order Cod Yellow	e SSF-962 Orange
the second s			
	М	-4759K	-4769W
	L	-4760L	-4770X
	XL	-4761M	-4771Y
	2XL	-4762N	-4772Z
	3XL	-4763P	-4773A
A DECEMBER OF			

962

Personal Protection

Hi-Vis Lightweight Jackets Orange

100% polyester tricot lightweight jackets. Very comfortable with 5cm reflective tape around the sleeves, waist, shoulders and back. 300m reflective distance and hook and loop closure.

Hi-Vis Bomber Jackets SFJ02

With 5cm width silver reflective tape banding on the sleeves, body, shoulders and back.

- Material: Polyester
- Closure type: Zipper and snap
- 1x chest pocket
- 2x outer pockets
- 2x inner pockets

Order Code SSF-962 Size Yellow -5501A Orange -5501F М -5501B -5501G L -5501C -5501D XL -5501H -55011 2XL 3XL -5501E -5501K

50 Years of Keeping Industry Working

Waterproofs

Rainsuit Jackets Lightweight, comfortable and stretchable. 100% waterproof. Zip closure under flap with press studs. Elasticated wristbands. Seams double welded, attached hood, 2x outside pockets.

Νανγ	Yellow				
Colour	Size	Order Code TFF-962	-	CA1	1
Navy	S M L XL 2XL 3XL	-2050A -2050B -2050C -2050D -2050E -2050F			1
Yellow	S M L XL 2XL 3XL	-2052A -2052B -2052C -2052D -2052E -2052F		-	

Rainsuit Trousers

Lightweight, comfortable and stretchable. 100% waterproof. High frequency welded seams. Elasticated waist. Legs opening adjusted by snap studs.

Navy	Yellow			
Colour	Size	Order Code TFF-962		
Navy	S M L	-2051A -2051B -2051C		Carlos -
	XL 2XL 3XL	-2051D -2051E -2051F		
Yellow	S M L	-2053A -2053B -2053C		24
	XL 2XL 3XL	-2053D -2053E -2053F		
			- f 1/ :	

50 Years of Keeping Industry Working © 2020

Quilt linin	of fabric with	Winter Jackets taped seams. hood. Two outer er pocket.
Colours guidane		
Black	Νανγ	
Yellow	Orange	
Colour Siz	e Order Code	
S M Black L XI 2X	-6250C -6250D -6250E -6250F L -6250G	
S M Navy L XI 2X	-6254D -6254E 6254F └ -6254G	
S M Yellow L XI 2X	-6256D -6256E -6256F -6256G	
S M Orange L XI	-6269D -6269E	

2-Piece Rainsuits in Yellow or Navy

2XL

М L

2X M

L XL 2XL -6171C -6171D

-6171E

Navy

Yellow

-6269G

Waterproof hooded jacket with drawstring closure, storm front with plastic zipper. Improved user comfort. The trousers have an elasticated waist band.

Personal Protection

50 Years of Keeping Industry Working © 2020

Welder's Clothing

Chrome Leather Welder's Clothing

A range of economically priced rugged workwear manufactured from high quality selected chrome leather. Spatter-resistant and tear-resistant. The full range offers head-to-toe protection against weld spatter and grinding sparks. Suitable for use in workshops, foundries and on-site.

Aprons

885

rotectio Personal

Colour	٧		
		Tie Fastening	
Grey	60 x 90	-8020K	
Grey	60 x 105	-8030K	
Red	60 x 90	-5410K	
	B	Buckle Fastening	
Grey	60 x 90	-8060K	
Red	60 x 90	-5440K	

Sleeves

Can be used independently or in conjunction with an apron or other garment to offer optimum protection of the lower arm and elbow. With elasticated openings. All seams have heavy duty stitching for durability and extended wear. One size. CE approved to EN470-1 CAT II.

Colour	Size	Order Code KEN-885	Colour
Grey Red	45cm 45cm	-8220K -5310K	Grey
828	50 Year	s of Keeping Industr	y Working

Generous fit for full torso and upper leg protection against weld spatter and grinding sparks, whilst offering freedom of movement

Jackets

Stud fastening jacket for full neck to waist protection against weld spatter and grinding sparks. With external side pocket, neck is lined with soft split leather for extra comfort. All seams have heavy duty stitching for durability and extended

Colour	Size	KEN-885	
Grey	L	-8160K	
Grey	XL	-8170K	
Red	L	-5222K	
Red	XL	-5223K	

Gaiters

For wearing over workshoes to protect against weld spatter and grinding sparks. With Hook-n-Loop fastening on back of calf and buckle adjustment around shoe. Double stitched and riveted seams for extra heavy duty use. CE approved to EN470-1 CAT II.

© 2020

Chemical Protection/Disposable Clothing

WTUFFSAFE 'Guard Master' Disposable Hooded Coveralls

Type 5/6 coveralls.

Disposable coveralls with hood, elastic cuffs, back and ankles. 1-way zip at front with 1-ply stormflap. Made from 55qsm SMS (spunbond, microporous spunbond) material with inside stitching. For noxious dust and splash. Ideal for dry particulate barrier and repellency. Lightweight and breathable. Liquid repellent. Designed to zip over neck to above the chin to protect exposed neck areas.

> Safety glasses, face mask, gloves and boots sold separately

GAT		6 13034: 005
Size	Order Code	
Size	Blue	White
S	-3800A	-3810A
М	-3801B	-3811B
L	-3802C	-3812C
L XL	-3802C -3803D	-3812C -3813D
L XL 2XL		
	-3803D	-3813D

Disposable Coveralls

100% polypropylene single-use disposable coverall for minimal risk and nuisance. Provides protection from non-hazardous dust and liquid splash. Designed for comfortable fit with elasticated ankles, cuffs, hood and waist. Suitable for DIY and home maintenance food processing, general čleaning, site visitors. stores and warehouse use etc. Colour: white.

Overshoes supplied separately.

Size	Order Code Blue	SSF-962 White
М	-1250C	-1253C
L	-1250D	-1253D
XL	-1250E	-1253E
2XL	-1250F	-1253F

-9002E 50 Years of Keeping Industry Working © 2020

Size Μ

T

ΧĪ

-9002D

'Guard Master PLUS' TUFF5AFE **Disposable Hooded Coveralls**

Type 5/6 coveralls.

Non-woven disposable coveralls with elasticated hood, cuffs, back and ankles. Anti-static. Liquid repellent. Diamond crotch ausset improves manoeuvrability 2-way zip at front with 1-ply adhesive tape stormflap. Laminated microporous film 65qsm with inside stitching. Provides protection against airborne solid particulates, liquid chemicals, infective agents, chemical and radioactive contamination. Designed to zip over neck to above the chin to protect exposed neck areas.

Non-woven Visitor Coats

This visitor's coat from Sitesafe® is manufactured from a 35gm² non-woven material, it has a collar and has a stud fastenina front. Colour: white.

25 Order Code SSF-962 -9002C

Safety glasses, face mask, gloves and boots sold separately.

962

Disposable Visitor Coat

This single use SiteSafe® visitor's coat is manufactured from low density polyethylene (LDPE) material and has front press stud fastening. One size only.

Colour: white.

SSF-962-9000K

Food Industry

Disposable

Hair Nets

Disposable bonded polypropylene hair

elasticated opening. One size fits all.

net's have a fine open weave with stitched

Bouffant Caps

Pack Order Code Colour Quantity **SSF-962**

Disposable Overshoes

problems associated with cross

contamination. Manufactured from

100

100

-1260B -1260W

Provides a cost effective solution to many

polyethylene with an elasticated closure.

Blue White

The Sitesafe® disposable bouffant will completely cover your hair, made from soft and lightweight polypropylene with an stitched elasticised edge. One size fits all.

PACK OF 100

Pack Order Code Quantity **SSF-962** Blue White 100 -2900B -2900W 100

Beard Masks

SiteSafe® with single elasticated fastening, beard mask is manufactured from polypropylene. One size only.

100

PACK 100

Colou	Pack ^r Quantit	Order Code ty SSF-962
Blue Whit		-1200B -1200W

Polyethylene Oversleeves

Protective sleeve and arm covering, elasticated at both ends for a comfortable fit manufactured from polyethylene. Available in a range of colours. One size: 40 x 20cm (16" x 8").

and coun	tless app	a, nospital, ic blications. Int al risk only.	
VIN	IYL		
CAT	E		
U	b		PACK OF 100
Colour	Size	Order Code TFF-961	
Blue	XL	-7033D	

© 2020

(Colour G		Order Code y SSF-962
	Blue	100	-5810B
	Green	100	-5810G
	Red	100	-5810R
	White	100	-5810W
	Yellow	100	-5810Y

830

50 Years of Keeping Industry Working

Mob Caps

PACK OF

100

SiteSafe® Mob caps completely cover a person's hair, manufactured from soft and comfortable, thermally bonded light polypropylene fibre with an encapsulated double stitched elasticated edge. One size fits all.

(Colour G	Pack Quantity	Order Code y SSF-962
	Blue	100	-5500B
	Green	100	-5500G
	Red	100	-5500R
	White	100	-5500W
	Yellow	100	-5500Y

Disposable Polythene Aprons

SiteSafe® disposable single use aprons manufactured from low density polythene. One size only 690 x 1070mm.

		A CONTRACTOR OF THE OWNER OF THE OWNER
		and the second se
		and the second se
		Sector States
		Contraction of the second s
		Read and the second
		State of the second
		No. of Concession, Name
		A CONTRACTOR OF A CONTRACTOR A
		Contraction (State of State)
		THE PERSON AND STREET
		THE REPORT OF A
		La Constant and Constant and Constant
		1 / A . M. Sales
		A REAL PROPERTY AND A REAL
10 S 10		
20		
1.000		
	1. 1	
		and the second
		and the second second second
pack of 100		In the second
100		
100		1
	1000-1120-220-134	Contraction of the Second

Colour C	Pack Quantit	Order Code y SSF-962
Blue	100	-1150B
Green	100	-1150G
Red	100	-1150R
White	100	-1150W
Yellow	100	-1150Y

Back Supports & Knee Pads

962

TUFFSAFE Back Support Be¹⁺ Provides comfortable support from lower back strain. Helps to reduce lower back discomfort. 8" wide elasticated dou back support belt. 1¹/₄" wide adjustable should

 Waist Size
 Order Code TFF-962

 S - 28-32"
 -2010A

 M - 32-38"
 -2011B

 L - 38-47"
 -2012C

 XL - 46-56"
 -2013D

straps.

Knee Pad Inserts

Work trouser insert knee pads manufactured from 100% lightweight flexible moulded polythene. Does not hinder the wearer when walking. Supplied in pairs. Manufactured to: EN14404:2004+A1:2010.

Size: 215 x 165mm.

Front

Back

TFF-962-8820A

Gel Knee Pads

Silicone gel for premium comfort and fit. Tough, abrasionresistant shell for excellent protection. Adjustable straps for flexible and secure fitting. **Size:** 180 x 220mm.

TFF-962-8844G

Knee Saver Mat

Manufactured from a closed cell PVC/nitrile blend. Reduces knee pain and lower back stress caused by regular kneeling. Resistant to oils and chemicals. **Size:** 530 x 360 x 25mm. **Colour:** black.

SSF-946-4650R

© 2020

RENNEDY INDUSTRIAL TOOLING

High Density Foam Knee Pads Quick release Hook-n-Loop

fastening. One size fits all. Nonskid material helps avoid slipping. **Size:** 145 x 250mm.

KEN-962-4980K

Partial Hard Case Knee Pads

Quick release Hook-n-Loop fastening. One size fits all. Flexible straps prevent binding behind the knee. Non-marring face protects surfaces. Foam cushion beneath cap.

Size: 180 x 250mm.

KEN-962-4990K

Neoprene Gel Knee Pads

Quick release Hook-n-Loop fastening. One size fits all. Flexible straps prevent binding behind the knee. **Size:** 190 x 230mm.

KEN-962-5010K

Neoprene Gel Elbow Pads

Quick release Hook-n-Loop fastening. One size fits all. Flexible straps for added comfort. Gel filled pad absorbs impact. **Size:** 150 x 190mm.

50 Years of Keeping Industry Working

Tool Tethering

Tool Tethers, Lanyards & Accessories

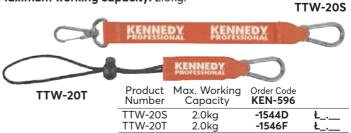
Any Tool, Tether IT!

Any looi, letner II: Dropped tools are a major cause of workplace injury and fatalities – most of which could be avoided with the correct tethering and use of tools. Safe use of tools at height begins with the tool tether, which acts as a secure attachment point for lanyards and ultimately tool belts and harnesses. Utilising a patented system developed by Tool@rrest, a pioneering name in the field of tethered tools, Kennedy can Retr@fit almost all new and existing hand tools with a certified, statistically fail-safe tether. This means you can enjoy industry leading tether safety without buying new tools and Retr@fitting can be carried out on your site or in a factory setting in a matter of seconds. And it doesn't stop there.

Kennedy can now offer a complete solution to help prevent tools from falling, including securing of the tools-in-waiting (tools in the work belt or holster) and those in active use.

Wrist Lanyards

TWS-20C Supplied complete with wrist wraps and swivel tail. Toggle style tails are also available.


Maximum working capacity: 2.0kg.

KEN-596-1574D 832

50 Years of Keeping Industry Working © 2020

Lanyard Tails Wrist lanyard tails for use with Kennedy wrist wraps. Maximum working capacity: 2.0kg.

Fall Protection For Tools

TBL-25Q

Snap-fit tool belt anchor point for

Maximum working capacity: 2.5kg.

securing tool lanyards.

KEN-596-1452B

Power Tool WR@P

For use with Li-Ion and Ni-Cad 18V power tools only. High strength nylon webbing.

Innovative, patent-pending design.

Maximum working capacity: 2.5kg.

962 **Quick Change Belt Loops**

ENNEDY Quick Change **Tool Lanyard**

TLE-1QC

Stretchable cord surrounded by tubular polyester webbing. Available with a range of tails for easy application on different tools

Maximum working capacity: 2.5kg.

KEN-596-1482B

Retr@ct 360 Retracting Lanyard

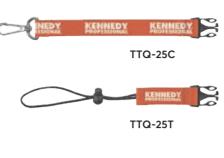
High-impact resistant polyamide casing. Self cleaning re-wind brake and release mechanism. 360° rotational capability. Patent pending. SP30 cord tensile strength 260kg.

Length: 1.2m (fully extended). Maximum working capacity: 2.5kg.

TLR-135

Standard lanyard with snap hook carabiner and single harness buckle.

TLR-130


With screw carabiner and non-slip double harness buckle preferred and specified by off-shore users

50 Years of Keeping Industry Working © 2020

Quick Change Tool Lanyard Tails

For use with Kennedy quick change tool lanyard only.

Product	Max. Working	Order Code	
Number	Capacity	KEN-596	
TTQ-25C	2.5kg	-1524D	
TTQ-25T	2.5kg	-1526F	

Webbing Lanyards TLW-1C2

100cm webbing lanyard. Durable polyester webbing construction. Complete with two stainless steel carabiners

Maximum working capacity: 2.5kg.

KEN-596-1486F

Lifting Buckets

Rugged, tested and large enough for multiple tools and applications. With eight internal carabiners stitched in to secure tools-in-waiting. 250mm diameter.

KEN-596-1506F

CE Certified with serial number for LOLER traceability.

TBB-34C

Standard bucket with open top.

TBB-34T

Toggle drawstring type - recommended for use in situations where untethered fasteners or sockets are being worked with. Closing the drawstring ensures that these loose items are prevented from falling in the event of a bucket tip or drop. Safe working load: 34kg.

TI R-130

Footwear

Wear foot protection to
ensure protection in
hazardous conditions.
Data supplied by the HSE
states that Slips and Trips
is still the largest cause of
reportable incidents.
A clean and tidy workplace
plus the correct footwear
can help to reduce slips
and trips plus other
accidents.Wear safety

Hazards

Falling objects, crushing loads, slips and trips, wet, hot or cold conditions. Electrostatic discharge, metal and chemical splash.

What the law requires

footwear

Under regulation 4 of the **Personal Protective Equipment at Work Regulations 1992**, it is the employer's responsibility to identify potential hazards in the workplace and if these cannot be rectified by any other means, then personal protective equipment must be provided free of charge and with appropriate training.

In the case of safety footwear, full compliance is more likely to be achieved through consulting with the workforce on their needs and preferences.

Classification	SB	SBP	S1	S1P	S2	S3	S4	S5
200 Joule toecap	•	•	•	•	•	•	•	•
Protection from upward penetration		•		•		•		•
Fully enclosed energy absorbing heel			•	•	•	•	•	•
Anti-static properties			•	•	•	•	•	•
Water resistant upper					•	•	•	•
Cleated outsole						•		•
Waterproof upper							•	•

Slip Resistance

Slip resistance is covered by **EN ISO 20344:2004 (A1: 2007)**. Footwear which has passed the EN test for slip resistance will be marked with one of the following codes

SRA	Slip resistance on ceramic tile floors with sodium lauryl sulfate solution (SLS)
SRB	Slip resistance on steel floors with glycerol
SRC	Passed both SRA and SRB tests

Applicable Standards

EN ISO 20345: 2011. Safety Footwear with Toecaps EN ISO 20346: 2014. Protective Footwear with Toecaps EN ISO 20344: 2011. Slip resistance

Toecaps and midsole protection

Different materials can provide the 200 Joule toecap protection. The main materials are steel and composite. Composite has various advantages over steel. The main two reasons are foot temperature when working outside. Composite does not conduct heat the same as steel therefore in cold conditions your feet say warmer. The other is it does not set off metal detectors.

Midsole protection again there are two main materials, Steel or Kevlar®. Kevlar (aramid fibre) has advantages over steel that it is more flexible, does not conduct the heat and does not set off metal detectors.

In addition to the safety rating for the footwear from the highest level S5 down to the lowest level SB. The following features can be added.

HRO	Outsole heat resistant	м	Metatarsal Protection
ні	Heat insulation of sole	ESD	Protects against ElectroStatic Discharge
СІ	Cold insulation of sole	FO	Sole resistant to fuel oils
WR	Water Resistant	E	Energy absorbing seat

Sizing Guide (Sizes are not standard)

UK	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Europe	36	37	38	391/2	401/2	42	43	441/2	451/2	47	48	49	51	52
Asia	22	23	24	25	26	27	28	29	30	31	32	33	34	35
USA (Men) (Women)	4 4 ¹ /2	5 5 ¹ /2	6 6 ¹ /2	7 7 ¹ /2	8 8 ¹ /2	9 9 ¹ /2	10 10 ¹ /2	11 11 ¹ /2	12 12 ¹ /2	13 13 ¹ /2	14 14 ¹ /2	15 15 ¹ /2	16 16¹/2	17 17 ¹ /2

NOTE: Most shoe companies do not use absolutely correct size conversions and so it is quite common to have some variation from these tables. The table represents the 'best fit' solution i.e. calibrated to the nearest size to its counterpart.

50 Years of Keeping Industry Working

Wear foot protection to ensure protection in hazardous conditions. Data supplied by the HSE states that Slips and Trips is still the largest cause of reportable incidents. A clean and tidy workplace plus the correct footwear can help to reduce slips and trips plus other accidents.

Water resistant (not recommended for immersion). **S**3 Cleated outsole. Fully enclosed energy absorbing heel reduces heel impact and supports the ankle. Penetration Resistant Midsole provides protection to sharp objects penetrate. 200 Joule toecap protects from items dropped or being crushed.

See pages 836 - 838

S1P

Fully enclosed energy absorbing heel reduces heel impact and supports the ankle. 200 Joule toecap protects the toes from dropped items or from being crushed. Penetration Resistant Midsole provides protection if sharp objects penetrate

the sole.

See page 839

50 Years of Keeping Industry Working © 2020

Footwear Selection

The highest protection level making S5 products **S5** ideal for working in most environments. Waterproof upper keeps your feet dry. Cleated outsole reduces mud build up. Fully enclosed energy absorbing heel reduces heel impact and

supports the ankle. Penetration **Resistant Midsole provides** protection if

sharp objects penetrate the sole. 200 Joule toecap protects the toes from dropped items or from being crushed.

See page 840

SB

We would recommend you moving up to a minimum protection level of S1P. 200 Joule toecap protects the toes from dropped items or from being crushed.

See page 840

Accessories

A range of socks insoles and replacement laces to suit safety boots, shoes and wellingtons.

963

S3 Safety Footwear

TUFFSAFE Waterproof Boots

Polyurethane sole with smooth shiny leather upper. 200J steel toecap. Steel midsole. High quality full length footbed for increased comfort. Waterproof breathable inner bag helps keep the feet dry and comfortable EN ISO 20345: 2011

10

11

12

13

-0180L

-0181M

-0182N

-0183P

S3

SRC

Chukka Boots

Polyurethane sole with smooth shiny action leather upper. High quality full length footbed for increased comfort.

EN ISO 20345: 2011

Composite

- Metal free
- 200J composite toecap
- Composite midsole

S3

SRC

Metal

- 200J steel toecap
- Steel midsole

Dealer Boots

Polyurethane sole with leather upper. 200J steel toecap. Steel midsole. High quality full length footbed for increased comfort.

EN ISO 20345: 2011

836

50 Years of Keeping Industry Working © 2020

Personal Protection

S3 Footwear Selection

TUFFSAFE Metatarsal Boots

Black. Lightweight flexible Metatarsal safety boot with Poron XRD (TM) internal Metatarsal protection. Leather upper with breathable inner lining mesh and Dual Density PU sole. Removable EVA comfort footbed. 200 Joule steel toe cap with 1100N steel midsole. Padded mesh collar and tongue with energy absorbing heel and oil resistant outsole. Antistatic. EN ISO 20345: 2011

963

S3

Μ

Size Order Code -1074C 6 -1074E -1074G -1074J 8 10 -1074L -1074N -1074Q 11 12 13 -1074S

Hiker Boots

Polyurethane sole with action nubuck leather upper. High quality full length footbed for increased comfort. EN ISO 20345: 2011

S3 SRC

Rigger Boots

Heat resistant outsole with leather upper. 200J steel toecap. Steel midsole. High quality full length foot bed for increased comfort. Kick stop for easy removal of boots without damaging the leather. Heat resistant outsole tested to withstand 300°C. EN ISO 20345: 2011

S 3
SRC
HRO

Composite • Metal free

- 200J composite toecap
- Composite midsole

50 Years of Keeping Industry Working © 2020

837

Order Code TFF-963

-7239K -7240K -7241K

-7242K

-7243K

Size

9

1Ó 11

12

13

Order Code TFF-963

-7233K

-7234K -7235K

-7236K

-7237K -7238K

Size 3

4 5

6 7

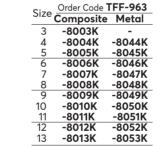
S3 Safety Footwear

TUFFSAFE Safety Trainers

Polyurethane sole with action nubuck leather upper. High quality full length footbed for increased comfort EN ISO 20345: 2011

S3

SRC


Four Eyelet Shoes

Polyurethane sole with smooth shiny action leather upper. High quality full length footbed for increased comfort. EN ISO 20345: 2011

	9
Composite	-
Metal free	
• 200J composite toecap	_
Composite midsole	

Metal

- 200J steel toecap
- Steel midsole

Safety Brogues

Metal free. Polyurethane sole with smooth shiny action leather upper. 200J composite toecap. Composite midsole. High quality full length footbed for increased comfort. EN ISO 20345: 2011

Size	Order Code TFF-963
6	-1826K
7	-1827K
8	-1828K
9	-1829K
10	-1830K
11	-1831K
12	-1832K
13	-1833K

S3

SRC

S3 SRC

leather upper. 200J steel toecap. Steel midsole. High quality full length footbed for increased comfort. EN ISO 20345: 2011 EN ISO 20345: 2011 Size Order Code TFF-963 Brown -8616K -8536K -8617K -8537K 6 -8576K -8577K -8618K -8538K -8578 8 -8619K -8539K -8579K -8620K -8540K -8621K -8541K -8622K -8542K 10 -8580K -8581 <u>11</u> 12 -8582K -8623K -8543K 13 -8583K FISA **Hiker Boots** Polyurethane sole with black suede leather upper. EN ISO 20345: 2011 Composite • Metal free • 200J composite toecap Composite midsole Rigger S1P Boots SRC Polyurethane sole with tan Apollo leather upper. 200J steel toecap. Steel midsole. Full length foot bed. Fur lined. EN ISO 20345: 2011 Size Order Code 3 -7503K -7504K -7505K 4 Safety Trainers 5 -7506K 67 -7507K -7508K EN ISO 20345: 2011 8 9 -7509K -7510K -7511K 10 Composite Metal 11 Metal free 12 -7512K • 200J composite toecap 13 -7513K Composite midsole **Trucker Boots** S1P Polyurethane sole with black smooth action leather SRC upper. 200J steel toecap. Steel midsole. Full length footbed. EN ISO 20345: 2011 Order Code SSF-963 Size **Four Eyelet Shoes** -8303K 3 -8304K 4 -8305K EN ISO 20345: 2011 -8306K 67 -8307K -8308k -8309k 10 -8310K 11 -8311K -8312k -8313K 13

S1P

SRC

50 Years of Keeping Industry Working © 2020

839

S1P

SRC

ersonal Protect 0

S1P Footwear Selection Chukka **Boots**

1

Polvurethane sole with black Barton leather upper. 200J steel toecap. Steel midsole. Full length footbec S

	SRC	Pe
d.		S
ize	Order Code SSF-963	no
3	-1003K	Ω
4	-1004K	
5 6 7	-1005K	
6	-1006K	
	-1007K	Ō
<u>8</u> 9	-1008K	H
	-1009K	D
0	-1010K	Ω
11	<u>-1011K</u>	
12	-1012K	0
13	-1013K	4

S1P

SRC

S1P

SRC

200J composite or steel toecap. Full length footbed.

Siz	Orde	r Code SSF-963
314	ze	Composite
3	3	-4003K
4	4	-4004K
5	5	-4005K
6	ó	-4006K
7	7	-4007K
8	3	-4008K
9	9	-4009K
10)	-4010K
1	1	-4011K
12	2	-4012K
13	3	-4013K

Polyurethane sole with black suede leather upper.

200J steel toecap Steel midsole

	Size	Order Code	SSF-963
	Size	Composite	Metal
	3	-8163K	-8103K
	4	-8164K	-8104K
	5	-8165K	-8105K
	6	-8166K	-8106K
	7	-8167K	-8107K
	8	-8168K	-8108K
	9	-8169K	-8109K
	10	-8170K	-8110K
<u>b</u>	11	-8171K	-8111K
	12	-8172K	-8112K
	13	-8173K	-8113K

Polyurethane sole with black Barton leather upper. 200J steel toecap. Steel midsole. Full length foot bed.

Order Code SSF-963 Size 3 -7803K -7804K 4 -7805K -7806K 6 -7807K -7808K 8 -7809K q 10 -7810K 11 12 -7811K -7812K 13 -7813K

TUFFSAFE Welted Boots

Goodyear welted sole with full grain black nubuck

963

SB & S5 Safety Footwear & Accessories

SB SRA

BBH 04 Nubuck Hiker Honey. Cemented construction, lightweight rubber sole. Heat resistant to 200°C. 200 joules toe protection. EN ISO 20345: 2011

SITESAFE.	Safety Wellingtons
-----------	-----------------------

Black. Energy absorbing heel. Tough construction. EN ISO 20345: 2004/A1 2007

S5 SRC WR

Size	Order Code SSF-963
3	-2003K
4	-2004K
5	-2005K
6	-2006K
7	-2007K
8	-2008K
9	-2009K
10	-2010K
11	-2011K
12	-2012K

🖲 TUFFSAFE

Laces

Pair of laces with sealed ends. Colour: Black

• Material: Polyester

Insoles

-0321E -0322F -0323G

-0324H

-0325J -0326K

8 10

11 12

FB1 Cushioned insole absorbs impacts increasing wearer's comfort.

Size	Order Code TFF-963
3	-3503K
4	-3504K
5	-3505K
6	-3506K
7	-3507K
8	-3508K
9	-3509K
10	-3510K
11	-3511K
12	-3512K
13	-3513K

C	P	$\mathbf{)}$
Shoe		P
		Boot
Lace Type	Order Code TFF-963	
Shoe	-9000K	

lype	TFF-963	
Shoe	-9000K	
Boot	-9001K	
840	50 Years	of Keeping Industry Working

© 2020

Ingress Protection (IP) Ratings Ingress Protection (IP) Ratings

Ingress Protection (IP) ratings are developed by the **European Committee for Electro Technical Standardization (CENELEC) (described IEC/EN 60529)**, specify the environmental protection an enclosure provides. In order to comply with stringent requirements for **CE Marking**, machine makers today are fitting their machines with parts that are certified according to **EU (European Union)** and international standards.

The IP rating normally has two (or three) numbers:

- Protection from solid objects or materials
- IP Second Number Protection from liquids
 - Protection against mechanical impacts (commonly omitted)

Example - IP Rating

IP First Number

IP Third Number

5 describes the level of protection from solid objects and **4** describes the level of protection from liquids.

Protection against solid objects

O No protection.

1

- 1 Protected against solid objects up to 50mm, e.g. accidental touch by hands.
- 2 Protected against solid objects up to 12mm, e.g. fingers.
- Protected against solid objects over 2.5mm (tools and wires).
- 4 Protected against solid objects over 1mm (tools, wire, and small wires).
- 5 Protected against dust limited ingress (no harmful deposit).
- **6** Totally protected against dust.

2

Protection against liquids

- No protection.
- Protection against vertically falling drops of water e.g. condensation.
 Protection against direct sprays of
- Protection against direct sprays of water up to 15° from the vertical.
 Protected against direct sprays of
 - Protected against direct sprays of water up to 60° from the vertical. Protection against water sprayed
 - from all directions ° limited ingress permitted.
- 5 Protected against low pressure jets of water from all directions ° limited ingress.
- 6 Protected against low pressure jets of water, e.g. for use on ship decks limited ingress permitted.
- 7 Protected against the effect of immersion between 15cm and 1m.
- 8 Protects against long periods of immersion under pressure.

Protection against mechanical impacts (commonly omitted)

o No protection.

3

1

- Protects against impact of 0.225 joule (e.g. 150g weight falling from 15cm height).
- 2 Protected against impact of 0.375 joule (e.g. 250g weight falling from 15cm height).
- **3** Protected against impact of 0.5 joule (e.g. 250g weight falling from 20cm height).
- 4 Protected against impact of 2.0 joule (e.g. 500g weight falling from 40cm height).
- **5** Protected against impact of 6.0 joule (e.g. 1.5kg weight falling from 40cm height).
- 6 Protected against impact of 20.0 joule (e.g. 5kg weight falling from 40cm height).

50 Years of Keeping Industry Working

Conversions Fraction, Millimetre, Gauge, Inch

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Clausge inch Trac2 Total Trac2 Total Total Trac2 Total Tota	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fraction Mellmenten Gauge In 4.572 15 1 4.673 14 1 4.673 14 1 4.673 14 1 4.673 14 1 4.673 14 1 4.673 14 1 4.762 12 1 4.978 9 1 4.978 9 1 4.978 9 1 5.005 8 1 5.005 8 1 5.005 8 1 5.005 7 2 5.159 7 2 5.169 7 2 5.200 5 2 5.203 7 2 5.203 2 2 5.409 4 2 5.705 2 2 5.705 2 2 5.705 2 2	CONVER Fractor Fractor 1772 1 1772 6 100 6 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 101 1 101 1 101 1 101 1 101 1 101 7 101 7 101 7 102 7 103 7 104 7 105 7 105 7 105 7 105 7 105 7 105 7 105 7 105 7 105	Imative Gauge incl. Practor 80 2877 2117 1 80 2717 1 1 909 1 2710 1 00 2717 1 1 10 2705 2117 1 10 2705 2117 1 10 2705 2133 1 117 K 2810 1 144 2812 25 2833 25 2833 1 1 26 2950 1 1 103 2950 1 1 104 2950 1 1 105 3051 25 1 11 N 3202 1 1 105 3051 25 1 1 106 3110 1 1 1 10 3288 1 1 1 10 3248	Imacro + Gauge + Inch Milinetre Gauge Inch 9.7 3819 3760 9.75 3839 3860 9.90 3860 3860 9.91 3860 3860 9.92 3806 3867 10.004 3937 10.12 10.25 4016 3976 10.22 4016 10.26 10.262 4016 10.39 10.39 4062 10.31 10.4 4231 10.7 10.76 4222 10.6 10.75 4222 10.4 10.75 4225 10.4 10.75 4225 10.4 11.1 4317 11.1 11.25 4429 11.25 4429 11.2 11.5 4626 11.7 4626 11.8 4449 11.4 4448 11.50 4627 11.6 4685
Fraction • Millimetre • Gauga • Intol Fraction 13.20 5537 13.20 13.30 13.20 5597 13.20 13.30 13.20 5597 13.20 13.30 13.20 5519 13.40 5519 13.20 5519 13.80 5519 13.20 5519 13.80 5519 13.404 5532 13.84 13.80 13.80 5524 13.90 13.90 13.80 5525 13.90 13.90 13.80 5525 13.90 19.94 13.80 5527 19.94 19.94 13.80 5527 19.94 19.94 15.00 5996 19.94 19.94 15.00 5996 19.94 19.94 15.00 5996 19.94 19.94 15.00 5996 19.94 19.94 15.00 5996 19.94 19.95 15.00 5996 19.94 <th>CONVERSIONS Fraction 20.25 70.20 20.35 70.20 20.35 80.71 20.36 8125 21.00 8268 21.00 8268 21.34 8366 21.55 8645 21.50 8645 21.50 8646 21.828 8504 22.622 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8906 22.625 8906 22.625 8906 22.625 9951 23.00 92552 23.00 9254 24.00 9259 25.00 9241 25.00 9441 25.00 10039 25.01 10038 25.02</th> <th>Milimete Icch Free 28.50 1.12205 31 28.50 1.12205 31 28.73 1.1319 28 28.72 1.1406 12 29.00 1.1516 12 29.00 1.1614 12 29.90 1.1614 12 29.00 1.1614 12 29.766 1.1713 30 30.50 1.875 13 30.52 1.1809 14 30.52 1.2008 12 30.52 1.2008 12 30.52 1.2003 14 30.52 1.2003 14 30.55 1.2008 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 32.541 1.2998 12 32.541 1.2998</th> <th>$\begin{array}{c} \begin{array}{c} 39.00 \\ + 39.201 \\ + 39.201 \\ + 39.201 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 40.094 \\ + 5781 \\ + 40.094 \\ + 5781 \\ + 40.094 \\ + 5781 \\ + 40.50 \\ + 5781 \\ + 40.50 \\ + 5781 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ +$</th> <th>Practic Practic 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 20332 20343 20343 20343 20343 20343</th> <th>In • Millimetre • Cauge • In Millimetre inch Frac 50.00 2.0000 20000 51.594 2.0032 213 52.00 2.0472 213 55.00 2.0472 23 53.00 2.04938 315 54.594 2.1250 355 55.594 2.1250 355 55.594 2.1675 373 57.150 2.2487 373 57.344 2.2481 373 57.345 2.3425 374 58.738 2.3428 379 58.00 2.1875 374 59.7384 2.3428 379 58.00 2.2832 379 58.00 2.3622 374 59.381 2.3428 379 51.00 2.4875 344 50.00 2.4833 379 60.300 2.4873 344 62.006 2.4878 374 65.881<!--</th--><th>Bon Milimetrie Inch # 74.612 2.9375 # 75.462 2.9528 # 75.00 2.9621 # 76.00 2.9021 76.00 2.9021 76.00 76.00 3.0012 76.00 76.994 3.0312 77.00 77.00 3.0315 77.860 78.00 3.0029 78.994 79.01 3.1102 79.905 79.02 3.1496 80.902 80.060 3.1496 80.923 81.00 3.1496 80.923 81.00 3.1225 81.00 81.00 3.2283 82.2560 82.00 3.2283 3.2283 82.550 3.2500 84.93 84.93 3.3418 85.00 84.93 3.3438 85.00 85.00 3.3465 87.750</th></th>	CONVERSIONS Fraction 20.25 70.20 20.35 70.20 20.35 80.71 20.36 8125 21.00 8268 21.00 8268 21.34 8366 21.55 8645 21.50 8645 21.50 8646 21.828 8504 22.622 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8866 22.625 8906 22.625 8906 22.625 8906 22.625 9951 23.00 92552 23.00 9254 24.00 9259 25.00 9241 25.00 9441 25.00 10039 25.01 10038 25.02	Milimete Icch Free 28.50 1.12205 31 28.50 1.12205 31 28.73 1.1319 28 28.72 1.1406 12 29.00 1.1516 12 29.00 1.1614 12 29.90 1.1614 12 29.00 1.1614 12 29.766 1.1713 30 30.50 1.875 13 30.52 1.1809 14 30.52 1.2008 12 30.52 1.2008 12 30.52 1.2003 14 30.52 1.2003 14 30.55 1.2008 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 31.55 1.2408 12 32.541 1.2998 12 32.541 1.2998	$\begin{array}{c} \begin{array}{c} 39.00 \\ + 39.201 \\ + 39.201 \\ + 39.201 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 39.50 \\ + 40.094 \\ + 5781 \\ + 40.094 \\ + 5781 \\ + 40.094 \\ + 5781 \\ + 40.50 \\ + 5781 \\ + 40.50 \\ + 5781 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ + 40.57 \\ + 592 \\ +$	Practic Practic 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 20332 20343 20343 20343 20343 20343	In • Millimetre • Cauge • In Millimetre inch Frac 50.00 2.0000 20000 51.594 2.0032 213 52.00 2.0472 213 55.00 2.0472 23 53.00 2.04938 315 54.594 2.1250 355 55.594 2.1250 355 55.594 2.1675 373 57.150 2.2487 373 57.344 2.2481 373 57.345 2.3425 374 58.738 2.3428 379 58.00 2.1875 374 59.7384 2.3428 379 58.00 2.2832 379 58.00 2.3622 374 59.381 2.3428 379 51.00 2.4875 344 50.00 2.4833 379 60.300 2.4873 344 62.006 2.4878 374 65.881 </th <th>Bon Milimetrie Inch # 74.612 2.9375 # 75.462 2.9528 # 75.00 2.9621 # 76.00 2.9021 76.00 2.9021 76.00 76.00 3.0012 76.00 76.994 3.0312 77.00 77.00 3.0315 77.860 78.00 3.0029 78.994 79.01 3.1102 79.905 79.02 3.1496 80.902 80.060 3.1496 80.923 81.00 3.1496 80.923 81.00 3.1225 81.00 81.00 3.2283 82.2560 82.00 3.2283 3.2283 82.550 3.2500 84.93 84.93 3.3418 85.00 84.93 3.3438 85.00 85.00 3.3465 87.750</th>	Bon Milimetrie Inch # 74.612 2.9375 # 75.462 2.9528 # 75.00 2.9621 # 76.00 2.9021 76.00 2.9021 76.00 76.00 3.0012 76.00 76.994 3.0312 77.00 77.00 3.0315 77.860 78.00 3.0029 78.994 79.01 3.1102 79.905 79.02 3.1496 80.902 80.060 3.1496 80.923 81.00 3.1496 80.923 81.00 3.1225 81.00 81.00 3.2283 82.2560 82.00 3.2283 3.2283 82.550 3.2500 84.93 84.93 3.3418 85.00 84.93 3.3438 85.00 85.00 3.3465 87.750
FREE Metric/Inch Conversion Wall Chart A2 Size)		OOLS	FRE Tapping Wall Cho (A2 Size)	Drill		IG TOOLS

AVAILABLE ON REQUEST

CAT-849-0938A

Contact your local distributor or representative.

AVAILABLE ON REQUEST CAT-849 - 0937A Contact your distributor or representative.

Engineers Reference Data Charts

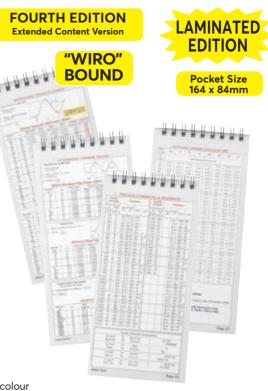
Now with 38 pages of engineering data. Each page coated with an anti-glare matt lamination to protect against the dirt and grease encountered in workshop conditions.

Contents:

- Basic forms of heat treatment Colour charts for tempering and for hardening
- & forging. Material groups Colour coded machineability chart and hardness listing.
- Tensile strength and hardness Shore hardness and equivalent tensile strengths and conversions included.
- Lubricant selection Colour coded materials chart and dilution guidelines.
- Hole and shaft tolerances H7-e8 tolerances for counterbores included.
- Metric screw and hole sizes Thread notation
- Explains terminology used to define thread characteristics.
- characteristics. **Standard thread forms;** Sequenced logically, tapping and clearance sizes integrated into single chart and colour highlighted for quick reference. Includes special metric pitches & NPT, distinctions made between 'Br' and 'G' series BSP ISO 5' made between 'Rp' and 'G' series BSP. ISO 529 pitch form diagrams shown. Now also lists tapping and clearance drill sizes for fluteless tap
- Dimensions of common shank types Now includes screwed shank, Weldon, DIN Taper, BT Taper, ISO Taper in addition to Morse taper shank details.
- Standards for engineering drawings Comprehensive listing including contemporary listings and illustrations.
- Abbreviations used in engineering drawings
- Common CNC codes Comprehensive listing including contemporary listinas
- Axis nomenclature for machine tools Newly added page explaining the use of letter addresses to define directional motion.
- **Trigonometry formulae** Colour coded CAD produced illustrations for quick reference.
- **Sines and Cosines**
- Calculated to six decimal places with colour

Engineers Reference Handbook

- A handy pocket-sized reference booklet of data charts and tables
- Suitable for the drawing office,



- coded axes for quick reference. **Tangents and Cotangents**
- Calculated to six decimal places with colour coded axes for quick reference
- **Co-ordinates for equally pitched holes** Clear and easy to read CAD produced diagrams
- Bending allowances for malleable materials Listed as metric radius and thickness with nearest equivalent SWG given for guidance. Clear and easy to read CAD produced diaarams.
- Gives required RPM for known cutter diameters and cutting speeds. Standard drill size conversions;

DESK

EDITION

No & letter sizes integrated into a single chart, standard sizes are highlighted in bold text, size range extended from 25.25mm up to 32.50mm. All inch-fractional sizes converted

Data Books

to mm equivalent as well as inch-decimal and Morse Taper shank sizes are indicated against drill diameter ranges.

- Abbreviations and formulae Definitions of standard meanings with specific attention given to turning, milling and drilling. Comprehensive list of commonly used
- abbreviations. Weight and measure systems, useful
- Conversions and constants A comprehensive listing of contemporary and old systems, along with the necessary conversion formulae.

ltem	Order Code CAT-849

Data Charts -2621A

50 Years of Keeping Industry Working © 2020

Conversions - Spanner & Socket Sizes

O Head Size (Spanner		Threc ↓ M	ad Size		Hec (Spar Acro	id Size iner Size, ss Flats)	0	Thread Size				Head Size (Across Flats)		Thread Size (Spanner Size) ↓ BS				
(Spanner Size, Across Flats)		<u>↑</u>		-				Unified Standard ANSI B 18.2.1 - 1972					<u>⊅</u>					
mm	German (BRD) metric according to DIN and ISO	France N F E 27-311 (69) 27-411 (69)	Sweden S M S 2164 - 1967 2175 - 1971	Metric for DIN 6914 - 6915	AF	lnch Decimal	mm Equivalent	Nominal Series	Heavy Series	Square Bolt Hex Bolt Hex Cap Screw (Finished Hex Bolt) Lag Screw	Nuts Heavy Hex Bolt Heavy Heavy Structural Bolt	Hex Flat Hex Flat Jam Hex Jam Hex Jam Hex Slotted Hex Thick Slotted Hex Castle	Bolts & Heavy Square Heavy Hex Flat Heavy Hex Heavy Hex Jam Heavy Hex Slotted	Square	Inch Decimal	mm Equivalent	BA & BSW	BSF
4	2		2 & 2.2		5/32	0.1562	3.97								0.152	3.86	8BA	
4.5 5	2.3 2.5		2.5		^{3/} 16	0.1875	4.76								0.172	4.37 4.90	7BA 6BA	
5.5	3	3	3 & 3.5		7/32	0.2187	5.56											
6	3.5	3.5			¥ ₄	0.2500	6.35								0.220	5.59 6.30	5BA 4BA	
7	4	4	4 & 4.5		9/ ₃₂	0.2812	7.14			No. 10					0.256	6.50	1/16W	
8	5	5	5		5⁄ ₁₆	0.3125	7.94								0.282	7.16	3BA 3∕ ₃₂ W	
9	5 Alt				11/32	0.3438	8.73								0.324	8.23	2BA	12/ 1
10	6	6	6		3⁄8 13⁄32	0.3750	9.52 10.32								0.340	8.64	¹∕8W	(^{3⁄} 16)
11	7	7	7		7/16	0.4375	11.11	ν ₄		<i>V</i> 4		V ₄		V ₄	0.365	9.27	1BA	(7/)
12 13	8	8	8	\mid	¥2	0.5000	12.70	5⁄16	V ₄	5/16		5/16	ν ₄		0.413	10.49 11.30	OBA ³∕16W	(7/ ₃₂) 1/ ₄
14	8 Alt				^{9/} 16	0.5625	14.29	3/8	5/16	3/8		3/8	5/ ₁₆	5⁄16	0.505			E/
15 16	10 KFZ				19/ ₃₂ 5/ ₈	0.5938	15.08 15.88	7/16		7/16				3/8	0.525	13.34	v₄W	^{5/} 16
17	10	10	10		11/16	0.6875	17.46		3⁄8			7/16	3⁄8		0.600	15.24	5∕16₩	3⁄8
18 19	12	12	12	\mid	3/4	0.7500	19.05	1/2	7/16	1/2		1/2	7/16	7/16				
20	12	12	12		25/ ₃₂	0.7812	19.84	<u> </u>							0.710	18.03	3∕8W	7⁄ ₁₆
21 22	14	14	14	12	^{13/} 16 7/ ₈	0.8125	20.64 22.22	9/16	V2	9/16	1/2	9/16	1/2	1/2				
23								=/		=/					0.820	20.92	7/	1/-
24 25	16	16	16		^{15/} 16	0.9375	23.81 25.40	5/8		5/8		5/8	9/16	5/8	0.820	20.83	^{7∕} 16₩	¥2
26									-1						0.920	23.37	¹ ∕₂W	^{9/} 16
27 28	18	18	18	16 18	1 ¹ /16	1.0625	26.99 28.58	3/4	5/8	3∕4	5/8	3⁄4	5/8	3⁄4	1.010	25.65	9⁄16W	5/8
30	20	20	20	10	1 ^{3/} 16	1.1875	30.16	.4		-4		- 4		-4	1100	07.0.4	5/ 34/	(11)
32	22	22	22	20	1 ¹ / ₄ 1 ^{5/} 16	1.2500 1.3125	31.75 33.34	7/8	3/4	7/8	3/4	7/8	3/4		1.100	27.94	5∕8W	(^{11⁄} 16)
					1 3⁄8	1.3750	34.92								1.200	30.48	^{11/} 16W	3/4
36 38	24	24	24	22	1 ^{7/} 16 1 ^{1/} 2	1.4375 1.5000	36.51 38.10	1	7/8	1	7⁄8	1	7⁄8	1	1.200	30.40	16 88	4
41	27	27	27	24	15/8	1.6250	41.28		1		1		1		1.300 1.390	33.02 35.31	³ ∕ ₄ ₩ ¹³ ∕ ₁₆ ₩	7/8 (15/16)
					1 ¹¹ / ₁₆ 1 ³ / ₄	1.6875 1.7500	42.86 44.45	11/8		11/8		11/8		11/8	1.390	33.31	10 WW	(.416)
46	30	30	30	27	1 ^{13/} 16	1.8125	46.04		1 ^{1/} 8		11/8		11/8		1.480	37.59	7∕8W	1
50	33	33	33		1 ^{7/8}	1.8750 2.0000	47.62 50.80	11/4	11/4	11/4	11/4	11/4	11/4	11/4	1.670	42.42	1W	1½
50	- 33	- 33	- 33		2 ¹ / ₁₆	2.0625	52.39	13⁄8		13⁄8		13⁄8		13⁄8				
55	36	36	36		2 ^{3/16} 2 ^{1/4}	2.1875 2.2500	55.56 57.15	1 ¹ /2	13⁄8	11/2	13⁄8	11/2	13⁄8	11/2	1.860	47.24	11/8W	11/4
60	39	39	39		2 ^{3/8}	2.3750	60.32	1.2	11/2		11/2	1.2	11/2	1.2	2.050	52.07	1¼W	13/8
65	42	42	42		2 ^{7/16} 2 ^{9/} 16	2.4375 2.5625	61.91 65.09			15⁄8	15⁄8		15⁄8					
					25/8	2.6250	66.68	13⁄4		13/4					2.220	56.39	1³∕8W	1½
70	45	45	45		2 ³ / ₄ 2 ^{13/} 16	2.7500 2.8125	69.85 71.44		13⁄4	17/8	13/4		13⁄4		2.410	61.21	1½W	15/8
75	48	48	48		2 ^{15/} 16	2.9375	74.61	_			1%		1%		2.580	65.53	15⁄8W	13/4
80	52	52	52	$\left - \right $	3 3 ¹ /8	3.0000 3.1250	76.20 79.38	2	2	2	2		2		2.760	70.10	1³⁄4W	2
85	56	56	56		3 ^{3/8}	3.3750	85.72	2 ¹ / ₄		2 ¹ / ₄								<u> </u>
90 95	60 64	60 64	60 64		31/2 33/4	3.5000 3.7500	88.90 95.25	2 ¹ / ₂	21/4	2 ¹ / ₂	21/4		21/4		2450	76.70	1%W	~//
					37/8	3.8750	98.42	_			2 ^{1/} 2		2 ¹ / ₂		3.150	80.01	2W	21/4
100 105	68 72	68 72	68 72		4 ¹ / ₈	4.1250	104.78	23/4		23/4					3.550	90.17		2 ¹ / ₂
110	76	76	76		4 ¹ / ₄	4.2500	107.95		23⁄4		23⁄4		23⁄4		3.890	98.81		2 ^{3/} 4
115 120	80 85	80 85	80 85		4 ¹ / ₂ 4 ⁵ / ₈	4.5000 4.6250	114.30 117.48	3	3	3	3		3		4100	10(17		
125					47/8	4.8750	123.82			31/4					4.180	106.17		3
130	90	90	90	\mid	5 5 ¹ / ₄	5.0000 5.2500	127.00 133.35			31/2			31/4 31/2		4.530	115.06		31/4
135	95	95	95		5 ^{3/8}	5.3750	136.52						31/2		4.850	123.19		3 ½
140 145	100	100	100		55/8 53/4	5.6250 5.7500	142.88 146.05			33/4			3 ³ ⁄ ₄ 3 ³ ⁄ ₄		E 10.0			3 2/.
150	105	105	105		6	6.0000	152.40			4			4		5.180	131.57		33⁄4
155 160	110	110	110		6 ¹ / ₈	6.1250	155.58						4		5.550	140.97		4
165	115	115	115															
170	120	120	120												6.380	162.05		4½
0.4.4					(aanii			() / / o		-						-		·

⁵⁰ Years of Keeping Industry Working

Ingress Protection (IP) Ratings

F ft g	= Centigrade = Fahrenheit = Feet = Gram al = UK Gallon p = Horse Power	in = Inch K = Kelvir kg = Kilog km = Kilo Kw = Kilo I = Litre	gram metre		lb = Pound mm = Millimetre mtr = Metre oz = Ounce pt = UK Pint yd = Yard				
To Convert From Imperial °F	To Metric °C	Multiply By °C=(°F -32) × 5/9	To Convert From Metric °C	To Imperio °F	Multiply al By °F=(°Cx9/5)+32				
°F	°K	°K=°C + 271.3	°K	°F	°F=(°K-271.3)x1.8+32				
ft	mtr	0.3048	cm ²	in ²	0.155				
ft ² ft ³	<u>mtr²</u> mtr ³	0.092903 0.028317	cm ³ (cc)	in ³ oz	0.06102 0.035274				
ft-lbs	kg-m	0.13826	gm/ltr	grains/gal	70.156				
ft-tons	tonne-mtr	0.3097	kg	ľb	2.2046				
gal	ltr Itu/us2	4.54609	kg/cm ²	lb/in ² (PSI)	14.223				
gal/ft ² grains/gal	ltr/m² gm/ltr	48.905 0.01425	kg/km kg/ltr	lb/mile lb/gal	<u>3.548</u> 10.022				
hp	kw	0.7457	kg/m	lb/ft	0.672				
in	mm	25.40	kg/m	lb/yd	2.016				
in ²	<u>cm²</u>	6.4516	kg/m	tons/ft	0.0003				
in ² in ³	mm ² cm3 (cc)	<u>645.16</u> 16.3871	kg/m kg/m ²	tons/yd lb/ft²	0.0009 0.2048				
in-tons	kg-m	25.8	kg/m ³	lb/ft ³	0.0624				
lb	kg	0.45360	kg/m ³	lb/yd ³	1.686				
lb/ft lb/ft2	kg/m	1.488	kg/mm ²	Ib/in ² (PSI)	1421.06				
lb/ft2 lb/ft ³	kg/m ² kg/m ³	4.883	kg/mm ² kg/mtr ²	tons/in ² lb/in ² (PSI)	0.635 0.00142				
lb/gall	kg/ltr	0.09983	kg-m	in-tons	0.00142				
lb/in ² (PSI)	kg/cm ²	0.07037	kğ-m	ft-lbs	7.233				
Ib/in ² (PSI)	kg/mm ²	0.0007037	km	nautical m					
lb/in² (PSI) lb/mile	kg/mtr ² kg/km	703.7 0.2818	km km²	miles miles ²	0.62137 0.38610				
lb/vd	kg/m	0.496	kw	hp	1.341				
lb/yd ³	kg/m ³	0.5933	ltr	gʻal	0.21997				
nautical mile miles	<u>km</u>	<u>1.8532</u> 1.60934	ltr ltr/m ²	pt gall/ft²	<u>1.75975</u> 0.0204				
miles ²	<u>km</u> km²	2.58999	mm	gaii/112	0.0204				
OZ	g	28.3495	mm ²	in ²	0.00155				
pt	ltr	0.568261	mtr	yd	1.09361				
tons	tonnes (100		mtr	ft	3.28084				
tons/ft tons/ft ²	kg/m tonnes/m²	<u> </u>	mtr ² mtr ²	<u>yd²</u> ft²	<u>1.19599</u> 10.76391				
tons/in ²	kg/mm ²	1.575	mtr ³	yd ³	1.30795				
tons/in ²	n/mm ²	15.444	mtr ³	ft ³	35.31467				
tons/yd tons/yd ²	kg/m tonnes/m²	<u> </u>	N/mm ² tonne-m	tons/in ² ft-tons	0.06475 3.229				
tons/yd ³	tonnes/m ³	1.329	tonnes (1000kg		0.9842				
yd	mtr	0.9144	tonnes/m ²	tons/ft ²	0.0914				
yd ²	mtr ²	0.836127	tonnes/m ²	tons/yd ²	0.823				
yd ³	mtr ³	0.764555	tonnes/m ³	tons/yd ³	0.752				
10 Centigrams 10 Decigrams 10 Decagram 10 Hectograms 10 Kilograms Metric Length 10 Millimetres 10 Centimetres 10 Decimetres	1 Gram 1 Decagram 1 Hectogram 1 Kilogram 1 Myriagram 1 Centimetre	Metric Surface Area 1 sqmtr 1 Centiares 10 Centiares 1 Deciare 10 Deciares 1 Are, (100 sq metres) 10 Ares 1 Dekare 10 Dekares 1 Hectare (10,000 sqmtr) 100 Hectares 1 Sq km Metric Capacity 10 Millilitres 1 Centilitre 10 Centilitres 1 Decilitre 10 Decilitres 1 Decilitre 10 Decilitres 1 Decollitre	20 Grains 3 Scruples 8 Drams 12 Ounces Troy Weight 24 Grains 20 Pennyweight	nsing Drugs, etc.	Apothecaries' Fluid Measure 60 Minims 1 Dram 8 Drams 1 Ounce 20 Ounces 1 Pint 8 Pints 1 Gallon Diamonds and Pearls are weighed by Carats, of 4 grains each (equal to 3.2 Troy grains). The Troy ounce is equal to 150 Diamond Carats. Gold, when pure, is 24 Carats fine;				
	1 Kilometre 1 Myriametre 1.094 Yards, 39.371in	10 Decalitres 1 Hectolitre 10 Hectolitres 1 Kilolitre Imperial Surface Area	Imperial Lengt		if it contains one part alloy it is said to be 23 Carats, and so on. Imperial Capacity Used for Liquids and Dry Goods				
Used for Genera	Il Merchandise	144 Square inches 1 Square foot	3 Inches	1 Inch 1 Palm	4 Gills 1 Pint				
16 Drams	1 Ounce (437 ^{1/} ₂ Grains Troy)	9 Square feet 1 Square yard 30 ^{1/4} Square yards 1 Square pole	7.92 Inches	1 Hand 1 Link 1 Span	2 Pints 1 Quart 4 Quarts 1 Gallon 2 Gallons 1 Peck				
16 Ounces	1 Pound (7000 Grains Troy)	40 Square poles 1 Rood 4 Roods 1 Acre		1 Span 1 Foot	2 Gallons 1 Peck 4 Pecks 1 Bushel				
14 Pounds	1 Stone	4 Roods 1 Acre 640 Acres 1 Square mile	18 Inches	1 Cubit	8 Bushels 1 Quarter				
	1 Quarter			1 Pace	5 Quarters 1 Load				
	1 Cental	7.92 inches is equal to one hundredth	3 Feet 37.2 Inches	1 Yard 1 Scottish Ell	36 Bushels 1 Chaldron				
	1 Hundredweight	of a "Gunter's Chain" (22 yards) which is (was) commonly used by surveyors.	45 Inches	1 English Ell	A bushel of wheat on an average				
2000 Pounds	(112 Pounds) 1 Short Ton 1 Ton (2240 Pounds)	An "Engineer's link" is equal to 12 inches and a chain is therefore $33\sqrt{3}$ yards (100 feet)		1 Geometrical Pace 1 Fathom 1 Pole	weighs 60 pounds; of barley, 47 pounds; of oats, 40 pounds. The gallon contains 10 pounds				
Avoirdupois pounds are greater than Troy in the proportion of 17 to 14 1 approx; Troy ounces are greater than Avoirdupois in the proportion of 79 5 to 72 approx.		Imperial Cubic Capacity1728 Cubic Inches1 Cubic Foot27 Cubic Feet1 Cubic Yard5 Cubic Feet1 Barrel Bulk40 Cubic Feet1 Ton Shipping40 Cubic Feet1 Load Hard Timber50 Cubic Feet1 Load Foreign Fir	100 Links 10 Chains 220 Yards 608 Feet 8 Furlongs 10 Cables 1 Nautical Mile 1 Knot	1 Chain 1 Chain 1 Furlong 1 Cable 1 Mile (land) 1 Nautical Mile 1 Nautical Mile 1 Nautical Mile 1 League	avoirdupois of distilled water. Decimal Capacity Pints Gallon Cub.Ft. Litres 1 0.125 0.0200 0.568 8 1.000 0.1604 4.544 16 2.000 0.3208 9.082				

50 Years of Keeping Industry Working

Notes

Notes

Notes